108 |
105 |
109 a = tnear; |
106 a = tnear; |
110 b = tfar; |
107 b = tfar; |
111 return true; |
108 return true; |
112 } |
109 } |
113 |
|
114 bool Sphere::intersect(const Ray &ray, Float &dist) const |
|
115 { |
|
116 Vector3 V = ray.o - center; |
|
117 register Float d = -dot(V, ray.dir); |
|
118 register Float Det = d * d - (dot(V,V) - sqr_radius); |
|
119 register Float t1,t2; |
|
120 if (Det > 0) { |
|
121 Det = sqrtf(Det); |
|
122 t1 = d - Det; |
|
123 t2 = d + Det; |
|
124 if (t1 > 0) |
|
125 { |
|
126 if (t1 < dist) |
|
127 { |
|
128 dist = t1; |
|
129 return true; |
|
130 } |
|
131 } |
|
132 else if (t2 > 0 && t2 < dist) |
|
133 { |
|
134 dist = t2; |
|
135 return true; |
|
136 } |
|
137 } |
|
138 return false; |
|
139 } |
|
140 |
|
141 /* if there should be CSG sometimes, this may be needed... */ |
|
142 bool Sphere::intersect_all(const Ray &ray, Float dist, vector<Float> &allts) const |
|
143 { |
|
144 //allts = new vector<Float>(); |
|
145 |
|
146 Vector3 V = ((Ray)ray).o - center; |
|
147 Float Vd = - dot(V, ray.dir); |
|
148 Float Det = Vd * Vd - (dot(V,V) - sqr_radius); |
|
149 |
|
150 if (Det > 0) { |
|
151 Det = sqrtf(Det); |
|
152 Float t1 = Vd - Det; |
|
153 Float t2 = Vd + Det; |
|
154 if (t1 < 0) |
|
155 { |
|
156 if (t2 > 0) |
|
157 { |
|
158 // ray from inside of the sphere |
|
159 allts.push_back(0.0); |
|
160 allts.push_back(t2); |
|
161 return true; |
|
162 } |
|
163 else |
|
164 return false; |
|
165 } |
|
166 else |
|
167 { |
|
168 allts.push_back(t1); |
|
169 allts.push_back(t2); |
|
170 return true; |
|
171 } |
|
172 } |
|
173 return false; |
|
174 } |
|
175 |
|
176 bool Sphere::intersect_bbox(const BBox &bbox) const |
|
177 { |
|
178 register float dmin = 0; |
|
179 for (int i = 0; i < 3; i++) |
|
180 { |
|
181 if (center[i] < bbox.L[i]) |
|
182 dmin += (center[i] - bbox.L[i])*(center[i] - bbox.L[i]); |
|
183 else |
|
184 if (center[i] > bbox.H[i]) |
|
185 dmin += (center[i] - bbox.H[i])*(center[i] - bbox.H[i]); |
|
186 } |
|
187 if (dmin <= sqr_radius) |
|
188 return true; |
|
189 return false; |
|
190 }; |
|
191 |
|
192 BBox Sphere::get_bbox() const |
|
193 { |
|
194 return BBox(center - radius, center + radius); |
|
195 } |
|
196 |
|
197 bool Box::intersect(const Ray &ray, Float &dist) const |
|
198 { |
|
199 register Float tnear = -Inf; |
|
200 register Float tfar = Inf; |
|
201 register Float t1, t2; |
|
202 |
|
203 for (int i = 0; i < 3; i++) |
|
204 { |
|
205 if (ray.dir[i] == 0) { |
|
206 /* ray is parallel to these planes */ |
|
207 if (ray.o[i] < L[i] || ray.o[i] > H[i]) |
|
208 return false; |
|
209 } |
|
210 else |
|
211 { |
|
212 /* compute the intersection distance of the planes */ |
|
213 t1 = (L[i] - ray.o[i]) / ray.dir[i]; |
|
214 t2 = (H[i] - ray.o[i]) / ray.dir[i]; |
|
215 |
|
216 if (t1 > t2) |
|
217 swap(t1, t2); |
|
218 |
|
219 if (t1 > tnear) |
|
220 tnear = t1; /* want largest Tnear */ |
|
221 if (t2 < tfar) |
|
222 tfar = t2; /* want smallest Tfar */ |
|
223 if (tnear > tfar || tfar < 0) |
|
224 return false; /* box missed; box is behind ray */ |
|
225 } |
|
226 } |
|
227 |
|
228 if (tnear < dist) |
|
229 { |
|
230 dist = tnear; |
|
231 return true; |
|
232 } |
|
233 return false; |
|
234 } |
|
235 |
|
236 bool Box::intersect_bbox(const BBox &bbox) const |
|
237 { |
|
238 return ( |
|
239 H.x > bbox.L.x && L.x < bbox.H.x && |
|
240 H.y > bbox.L.y && L.y < bbox.H.y && |
|
241 H.z > bbox.L.z && L.z < bbox.H.z); |
|
242 } |
|
243 |
|
244 const Vector3 Box::normal(const Vector3 &P) const |
|
245 { |
|
246 register Vector3 l = P - L; |
|
247 register Vector3 h = H - P; |
|
248 |
|
249 if (l.x < h.x) |
|
250 h.x = -1; |
|
251 else |
|
252 { |
|
253 l.x = h.x; |
|
254 h.x = +1; |
|
255 } |
|
256 |
|
257 if (l.y < h.y) |
|
258 h.y = -1; |
|
259 else |
|
260 { |
|
261 l.y = h.y; |
|
262 h.y = +1; |
|
263 } |
|
264 |
|
265 if (l.z < h.z) |
|
266 h.z = -1; |
|
267 else |
|
268 { |
|
269 l.z = h.z; |
|
270 h.z = +1; |
|
271 } |
|
272 |
|
273 if (l.x > l.y) |
|
274 { |
|
275 h.x = 0; |
|
276 if (l.y > l.z) |
|
277 h.y = 0; |
|
278 else |
|
279 h.z = 0; |
|
280 } |
|
281 else |
|
282 { |
|
283 h.y = 0; |
|
284 if (l.x > l.z) |
|
285 h.x = 0; |
|
286 else |
|
287 h.z = 0; |
|
288 } |
|
289 return h; |
|
290 } |
|
291 |
|
292 #ifdef TRI_PLUCKER |
|
293 inline void Plucker(const Vector3 &p, const Vector3 &q, Float* pl) |
|
294 { |
|
295 pl[0] = p.x*q.y - q.x*p.y; |
|
296 pl[1] = p.x*q.z - q.x*p.z; |
|
297 pl[2] = p.x - q.x; |
|
298 pl[3] = p.y*q.z - q.y*p.z; |
|
299 pl[4] = p.z - q.z; |
|
300 pl[5] = q.y - p.y; |
|
301 } |
|
302 |
|
303 inline Float Side(const Float* pla, const Float* plb) |
|
304 { |
|
305 return pla[0]*plb[4] + pla[1]*plb[5] + pla[2]*plb[3] + pla[4]*plb[0] + pla[5]*plb[1] + pla[3]*plb[2]; |
|
306 } |
|
307 #endif |
|
308 |
|
309 Triangle::Triangle(Vertex *aA, Vertex *aB, Vertex *aC, Material *amaterial) |
|
310 : A(aA), B(aB), C(aC) |
|
311 { |
|
312 material = amaterial; |
|
313 |
|
314 const Vector3 c = B->P - A->P; |
|
315 const Vector3 b = C->P - A->P; |
|
316 |
|
317 N = cross(c, b); |
|
318 N.normalize(); |
|
319 |
|
320 #ifdef TRI_PLUCKER |
|
321 Plucker(B->P,C->P,pla); |
|
322 Plucker(C->P,A->P,plb); |
|
323 Plucker(A->P,B->P,plc); |
|
324 #endif |
|
325 |
|
326 #if defined(TRI_BARI) || defined(TRI_BARI_PRE) |
|
327 if (fabsf(N.x) > fabsf(N.y)) |
|
328 { |
|
329 if (fabsf(N.x) > fabsf(N.z)) |
|
330 k = 0; |
|
331 else |
|
332 k = 2; |
|
333 } |
|
334 else |
|
335 { |
|
336 if (fabsf(N.y) > fabsf(N.z)) |
|
337 k = 1; |
|
338 else |
|
339 k = 2; |
|
340 } |
|
341 #endif |
|
342 #ifdef TRI_BARI_PRE |
|
343 int u = (k + 1) % 3; |
|
344 int v = (k + 2) % 3; |
|
345 |
|
346 Float krec = 1.0 / N[k]; |
|
347 nu = N[u] * krec; |
|
348 nv = N[v] * krec; |
|
349 nd = dot(N, A->P) * krec; |
|
350 |
|
351 // first line equation |
|
352 Float reci = 1.0f / (b[u] * c[v] - b[v] * c[u]); |
|
353 bnu = b[u] * reci; |
|
354 bnv = -b[v] * reci; |
|
355 |
|
356 // second line equation |
|
357 cnu = -c[u] * reci; |
|
358 cnv = c[v] * reci; |
|
359 #endif |
|
360 } |
|
361 |
|
362 bool Triangle::intersect(const Ray &ray, Float &dist) const |
|
363 { |
|
364 #ifdef TRI_PLUCKER |
|
365 Float plr[6]; |
|
366 Plucker(ray.o, ray.o+ray.dir, plr); |
|
367 const bool side0 = Side(plr, pla) >= 0.0; |
|
368 const bool side1 = Side(plr, plb) >= 0.0; |
|
369 if (side0 != side1) |
|
370 return false; |
|
371 const bool side2 = Side(plr, plc) >= 0.0; |
|
372 if (side0 != side2) |
|
373 return false; |
|
374 const Float t = - dot( (ray.o - A->P), N) / dot(ray.dir,N); |
|
375 if(t <= Eps || t >= dist) |
|
376 return false; |
|
377 dist = t; |
|
378 return true; |
|
379 #endif |
|
380 |
|
381 #if defined(TRI_BARI) || defined(TRI_BARI_PRE) |
|
382 static const int modulo3[5] = {0,1,2,0,1}; |
|
383 const Vector3 &O = ray.o; |
|
384 const Vector3 &D = ray.dir; |
|
385 register const int u = modulo3[k+1]; |
|
386 register const int v = modulo3[k+2]; |
|
387 #endif |
|
388 #ifdef TRI_BARI_PRE |
|
389 const Float t = (nd - O[k] - nu * O[u] - nv * O[v]) / (D[k] + nu * D[u] + nv * D[v]); |
|
390 |
|
391 if (t >= dist || t < Eps) |
|
392 return false; |
|
393 |
|
394 const Float hu = O[u] + t * D[u] - A->P[u]; |
|
395 const Float hv = O[v] + t * D[v] - A->P[v]; |
|
396 const Float beta = hv * bnu + hu * bnv; |
|
397 |
|
398 if (beta < 0.) |
|
399 return false; |
|
400 |
|
401 const Float gamma = hu * cnv + hv * cnu; |
|
402 if (gamma < 0. || beta + gamma > 1.) |
|
403 return false; |
|
404 |
|
405 dist = t; |
|
406 return true; |
|
407 #endif |
|
408 |
|
409 #ifdef TRI_BARI |
|
410 // original barycentric coordinates based intesection |
|
411 // not optimized, just for reference |
|
412 const Vector3 c = B - A; |
|
413 const Vector3 b = C - A; |
|
414 // distance test |
|
415 const Float t = - dot( (O-A), N) / dot(D,N); |
|
416 if (t < Eps || t > dist) |
|
417 return false; |
|
418 |
|
419 // calc hitpoint |
|
420 const Float Hu = O[u] + t * D[u] - A[u]; |
|
421 const Float Hv = O[v] + t * D[v] - A[v]; |
|
422 const Float beta = (b[u] * Hv - b[v] * Hu) / (b[u] * c[v] - b[v] * c[u]); |
|
423 if (beta < 0) |
|
424 return false; |
|
425 const Float gamma = (c[v] * Hu - c[u] * Hv) / (b[u] * c[v] - b[v] * c[u]); |
|
426 if (gamma < 0) |
|
427 return false; |
|
428 if (beta+gamma > 1) |
|
429 return false; |
|
430 dist = t; |
|
431 return true; |
|
432 #endif |
|
433 } |
|
434 |
|
435 bool Triangle::intersect_bbox(const BBox &bbox) const |
|
436 { |
|
437 const Vector3 boxcenter = (bbox.L+bbox.H)*0.5; |
|
438 const Vector3 boxhalfsize = (bbox.H-bbox.L)*0.5; |
|
439 const Vector3 v0 = A->P - boxcenter; |
|
440 const Vector3 v1 = B->P - boxcenter; |
|
441 const Vector3 v2 = C->P - boxcenter; |
|
442 const Vector3 e0 = v1-v0; |
|
443 const Vector3 e1 = v2-v1; |
|
444 const Vector3 e2 = v0-v2; |
|
445 |
|
446 Float fex = fabsf(e0.x); |
|
447 Float fey = fabsf(e0.y); |
|
448 Float fez = fabsf(e0.z); |
|
449 |
|
450 Float p0,p1,p2,min,max,rad; |
|
451 |
|
452 p0 = e0.z*v0.y - e0.y*v0.z; |
|
453 p2 = e0.z*v2.y - e0.y*v2.z; |
|
454 if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} |
|
455 rad = fez * boxhalfsize.y + fey * boxhalfsize.z; |
|
456 if(min>rad || max<-rad) return false; |
|
457 |
|
458 p0 = -e0.z*v0.x + e0.x*v0.z; |
|
459 p2 = -e0.z*v2.x + e0.x*v2.z; |
|
460 if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} |
|
461 rad = fez * boxhalfsize.x + fex * boxhalfsize.z; |
|
462 if(min>rad || max<-rad) return false; |
|
463 |
|
464 p1 = e0.y*v1.x - e0.x*v1.y; |
|
465 p2 = e0.y*v2.x - e0.x*v2.y; |
|
466 if(p2<p1) {min=p2; max=p1;} else {min=p1; max=p2;} |
|
467 rad = fey * boxhalfsize.x + fex * boxhalfsize.y; |
|
468 if(min>rad || max<-rad) return false; |
|
469 |
|
470 fex = fabsf(e1.x); |
|
471 fey = fabsf(e1.y); |
|
472 fez = fabsf(e1.z); |
|
473 |
|
474 p0 = e1.z*v0.y - e1.y*v0.z; |
|
475 p2 = e1.z*v2.y - e1.y*v2.z; |
|
476 if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} |
|
477 rad = fez * boxhalfsize.y + fey * boxhalfsize.z; |
|
478 if(min>rad || max<-rad) return false; |
|
479 |
|
480 p0 = -e1.z*v0.x + e1.x*v0.z; |
|
481 p2 = -e1.z*v2.x + e1.x*v2.z; |
|
482 if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} |
|
483 rad = fez * boxhalfsize.x + fex * boxhalfsize.z; |
|
484 if(min>rad || max<-rad) return false; |
|
485 |
|
486 p0 = e1.y*v0.x - e1.x*v0.y; |
|
487 p1 = e1.y*v1.x - e1.x*v1.y; |
|
488 if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} |
|
489 rad = fey * boxhalfsize.x + fex * boxhalfsize.y; |
|
490 if(min>rad || max<-rad) return false; |
|
491 |
|
492 fex = fabsf(e2.x); |
|
493 fey = fabsf(e2.y); |
|
494 fez = fabsf(e2.z); |
|
495 |
|
496 p0 = e2.z*v0.y - e2.y*v0.z; |
|
497 p1 = e2.z*v1.y - e2.y*v1.z; |
|
498 if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} |
|
499 rad = fez * boxhalfsize.y + fey * boxhalfsize.z; |
|
500 if(min>rad || max<-rad) return false; |
|
501 |
|
502 p0 = -e2.z*v0.x + e2.x*v0.z; |
|
503 p1 = -e2.z*v1.x + e2.x*v1.z; |
|
504 if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} |
|
505 rad = fez * boxhalfsize.x + fex * boxhalfsize.z; |
|
506 if(min>rad || max<-rad) return false; |
|
507 |
|
508 p1 = e2.y*v1.x - e2.x*v1.y; |
|
509 p2 = e2.y*v2.x - e2.x*v2.y; |
|
510 if(p2<p1) {min=p2; max=p1;} else {min=p1; max=p2;} |
|
511 rad = fey * boxhalfsize.x + fex * boxhalfsize.y; |
|
512 if(min>rad || max<-rad) return false; |
|
513 |
|
514 /* test overlap in the {x,y,z}-directions */ |
|
515 /* test in X-direction */ |
|
516 min = v0.x; |
|
517 if (v1.x < min) min = v1.x; |
|
518 if (v2.x < min) min = v2.x; |
|
519 max = v0.x; |
|
520 if (v1.x > max) max = v1.x; |
|
521 if (v2.x > max) max = v2.x; |
|
522 if(min>boxhalfsize.x || max<-boxhalfsize.x) return false; |
|
523 |
|
524 /* test in Y-direction */ |
|
525 min = v0.y; |
|
526 if (v1.y < min) min = v1.y; |
|
527 if (v2.y < min) min = v2.y; |
|
528 max = v0.y; |
|
529 if (v1.y > max) max = v1.y; |
|
530 if (v2.y > max) max = v2.y; |
|
531 if(min>boxhalfsize.y || max<-boxhalfsize.y) return false; |
|
532 |
|
533 /* test in Z-direction */ |
|
534 min = v0.z; |
|
535 if (v1.z < min) min = v1.z; |
|
536 if (v2.z < min) min = v2.z; |
|
537 max = v0.z; |
|
538 if (v1.z > max) max = v1.z; |
|
539 if (v2.z > max) max = v2.z; |
|
540 if(min>boxhalfsize.z || max<-boxhalfsize.z) return false; |
|
541 |
|
542 /* test if the box intersects the plane of the triangle */ |
|
543 Vector3 vmin,vmax; |
|
544 Float v; |
|
545 for(int q=0;q<3;q++) |
|
546 { |
|
547 v=v0[q]; |
|
548 if(N[q]>0.0f) |
|
549 { |
|
550 vmin.cell[q]=-boxhalfsize[q] - v; |
|
551 vmax.cell[q]= boxhalfsize[q] - v; |
|
552 } |
|
553 else |
|
554 { |
|
555 vmin.cell[q]= boxhalfsize[q] - v; |
|
556 vmax.cell[q]=-boxhalfsize[q] - v; |
|
557 } |
|
558 } |
|
559 if(dot(N,vmin)>0.0f) return false; |
|
560 if(dot(N,vmax)>=0.0f) return true; |
|
561 |
|
562 return false; |
|
563 } |
|
564 |
|
565 BBox Triangle::get_bbox() const |
|
566 { |
|
567 BBox bbox = BBox(); |
|
568 bbox.L = A->P; |
|
569 if (B->P.x < bbox.L.x) bbox.L.x = B->P.x; |
|
570 if (C->P.x < bbox.L.x) bbox.L.x = C->P.x; |
|
571 if (B->P.y < bbox.L.y) bbox.L.y = B->P.y; |
|
572 if (C->P.y < bbox.L.y) bbox.L.y = C->P.y; |
|
573 if (B->P.z < bbox.L.z) bbox.L.z = B->P.z; |
|
574 if (C->P.z < bbox.L.z) bbox.L.z = C->P.z; |
|
575 bbox.H = A->P; |
|
576 if (B->P.x > bbox.H.x) bbox.H.x = B->P.x; |
|
577 if (C->P.x > bbox.H.x) bbox.H.x = C->P.x; |
|
578 if (B->P.y > bbox.H.y) bbox.H.y = B->P.y; |
|
579 if (C->P.y > bbox.H.y) bbox.H.y = C->P.y; |
|
580 if (B->P.z > bbox.H.z) bbox.H.z = B->P.z; |
|
581 if (C->P.z > bbox.H.z) bbox.H.z = C->P.z; |
|
582 return bbox; |
|
583 }; |
|