kd-tree traversal - avoid dynamic memory allocation
use minimum storage size for KdNode (8B on 32bit cpu)
vector.h - add division operator, fix semicolons
/* * kdtree.cc: KdTree class * * This file is part of Pyrit Ray Tracer. * * Copyright 2006, 2007 Radek Brich * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */#include <algorithm>#include <stack>#include "common.h"#include "kdtree.h"class ShapeBound{public: Shape *shape; Float pos; bool end; ShapeBound(Shape *ashape, const Float apos, const bool aend): shape(ashape), pos(apos), end(aend) {}; friend bool operator<(const ShapeBound& a, const ShapeBound& b) { if (a.pos == b.pos) return a.shape < b.shape; else return a.pos < b.pos; };};// stack element for kd-tree traversalstruct StackElem{ KdNode* node; /* pointer to far child */ Float t; /* the entry/exit signed distance */ Vector3 pb; /* the coordinates of entry/exit point */ int prev;};// ----------------------------------------KdNode::~KdNode(){ if (isLeaf()) delete getShapes(); else delete[] getLeftChild();}// kd-tree recursive build algorithm, inspired by PBRT (www.pbrt.org)void KdNode::subdivide(BBox bounds, int maxdepth){ if (maxdepth <= 0 || getShapes()->size() <= 2) { setLeaf(); return; } // choose split axis /*axis = 0; if (bounds.h() > bounds.w() && bounds.h() > bounds.d()) axis = 1; if (bounds.d() > bounds.w() && bounds.d() > bounds.h()) axis = 2;*/ // create sorted list of shape bounds (= find all posible splits) vector<ShapeBound> edges[3]; ShapeList::iterator shape; for (shape = getShapes()->begin(); shape != getShapes()->end(); shape++) { BBox shapebounds = (*shape)->get_bbox(); for (int ax = 0; ax < 3; ax++) { edges[ax].push_back(ShapeBound(*shape, shapebounds.L[ax], 0)); edges[ax].push_back(ShapeBound(*shape, shapebounds.H[ax], 1)); } } for (int ax = 0; ax < 3; ax++) sort(edges[ax].begin(), edges[ax].end()); // choose best split pos const Float K = 1.4; // constant, K = cost of traversal / cost of ray-triangle intersection Float SAV = (bounds.w()*bounds.h() + // surface area of node bounds.w()*bounds.d() + bounds.h()*bounds.d()); Float cost = SAV * (K + getShapes()->size()); // initial cost = non-split cost vector<ShapeBound>::iterator edge, splitedge = edges[2].end(); int axis = 0; for (int ax = 0; ax < 3; ax++) { int lnum = 0, rnum = getShapes()->size(); BBox lbb = bounds; BBox rbb = bounds; for (edge = edges[ax].begin(); edge != edges[ax].end(); edge++) { if (edge->end) rnum--; // calculate SAH cost of this split lbb.H.cell[ax] = edge->pos; rbb.L.cell[ax] = edge->pos; Float SAL = (lbb.w()*lbb.h() + lbb.w()*lbb.d() + lbb.h()*lbb.d()); Float SAR = (rbb.w()*rbb.h() + rbb.w()*rbb.d() + rbb.h()*rbb.d()); Float splitcost = K*SAV + SAL*(K + lnum) + SAR*(K + rnum); if (splitcost < cost) { axis = ax; splitedge = edge; cost = splitcost; split = edge->pos; } if (!edge->end) lnum++; } } if (splitedge == edges[2].end()) { setLeaf(); return; }#if 0// export kd-tree as .obj for visualization// this would be hard to reconstruct later static ofstream F("kdtree.obj"); Vector3 v; static int f=0; v.cell[axis] = split; v.cell[(axis+1)%3] = bounds.L.cell[(axis+1)%3]; v.cell[(axis+2)%3] = bounds.L.cell[(axis+2)%3]; F << "v " << v.x << " " << v.y << " " << v.z << endl; v.cell[(axis+1)%3] = bounds.L.cell[(axis+1)%3]; v.cell[(axis+2)%3] = bounds.H.cell[(axis+2)%3]; F << "v " << v.x << " " << v.y << " " << v.z << endl; v.cell[(axis+1)%3] = bounds.H.cell[(axis+1)%3]; v.cell[(axis+2)%3] = bounds.H.cell[(axis+2)%3]; F << "v " << v.x << " " << v.y << " " << v.z << endl; v.cell[(axis+1)%3] = bounds.H.cell[(axis+1)%3]; v.cell[(axis+2)%3] = bounds.L.cell[(axis+2)%3]; F << "v " << v.x << " " << v.y << " " << v.z << endl; F << "f " << f+1 << " " << f+2 << " " << f+3 << " " << f+4 << endl; f += 4;#endif // split this node delete getShapes(); BBox lbb = bounds; BBox rbb = bounds; lbb.H.cell[axis] = split; rbb.L.cell[axis] = split; setChildren(new KdNode[2]); setAxis(axis); for (edge = edges[axis].begin(); edge != splitedge; edge++) if (!edge->end && edge->shape->intersect_bbox(lbb)) getLeftChild()->addShape(edge->shape); for (edge = splitedge; edge < edges[axis].end(); edge++) if (edge->end && edge->shape->intersect_bbox(rbb)) getRightChild()->addShape(edge->shape); getLeftChild()->subdivide(lbb, maxdepth-1); getRightChild()->subdivide(rbb, maxdepth-1);}void KdTree::build(){ dbgmsg(1, "* building kd-tree\n"); root = new KdNode(); ShapeList::iterator shape; for (shape = shapes.begin(); shape != shapes.end(); shape++) root->addShape(*shape); root->subdivide(bbox, max_depth); built = true;}/* algorithm by Vlastimil Havran, Heuristic Ray Shooting Algorithms, appendix C */Shape *KdTree::nearest_intersection(const Shape *origin_shape, const Ray &ray, Float &nearest_distance){ Float a, b; /* entry/exit signed distance */ Float t; /* signed distance to the splitting plane */ /* if we have no tree, fall back to naive test */ if (!built) return Container::nearest_intersection(origin_shape, ray, nearest_distance); if (!bbox.intersect(ray, a, b)) return NULL; /* pointers to the far child node and current node */ KdNode *farchild, *node; node = root; StackElem stack[max_depth]; int entry = 0, exit = 1; stack[entry].t = a; /* distinguish between internal and external origin of a ray*/ if (a >= 0.0) stack[entry].pb = ray.o + ray.dir * a; /* external */ else stack[entry].pb = ray.o; /* internal */ /* setup initial exit point in the stack */ stack[exit].t = b; stack[exit].pb = ray.o + ray.dir * b; stack[exit].node = NULL; /* loop, traverse through the whole kd-tree, until an object is intersected or ray leaves the scene */ Float splitVal; int axis; static const int mod3[] = {0,1,2,0,1}; const Vector3 invdir = 1 / ray.dir; while (node) { /* loop until a leaf is found */ while (!node->isLeaf()) { /* retrieve position of splitting plane */ splitVal = node->getSplit(); axis = node->getAxis(); if (stack[entry].pb[axis] <= splitVal) { if (stack[exit].pb[axis] <= splitVal) { /* case N1, N2, N3, P5, Z2, and Z3 */ node = node->getLeftChild(); continue; } if (stack[exit].pb[axis] == splitVal) { /* case Z1 */ node = node->getRightChild(); continue; } /* case N4 */ farchild = node->getRightChild(); node = node->getLeftChild(); } else { /* (stack[entry].pb[axis] > splitVal) */ if (splitVal < stack[exit].pb[axis]) { /* case P1, P2, P3, and N5 */ node = node->getRightChild(); continue; } /* case P4 */ farchild = node->getLeftChild(); node = node->getRightChild(); } /* case P4 or N4 . . . traverse both children */ /* signed distance to the splitting plane */ t = (splitVal - ray.o[axis]) * invdir[axis]; /* setup the new exit point and push it onto stack */ register int tmp = exit; exit++; if (exit == entry) exit++; assert(exit < max_depth); stack[exit].prev = tmp; stack[exit].t = t; stack[exit].node = farchild; stack[exit].pb.cell[axis] = splitVal; stack[exit].pb.cell[mod3[axis+1]] = ray.o.cell[mod3[axis+1]] + t * ray.dir.cell[mod3[axis+1]]; stack[exit].pb.cell[mod3[axis+2]] = ray.o.cell[mod3[axis+2]] + t * ray.dir.cell[mod3[axis+2]]; } /* current node is the leaf . . . empty or full */ Shape *nearest_shape = NULL; Float dist = stack[exit].t; ShapeList::iterator shape; for (shape = node->getShapes()->begin(); shape != node->getShapes()->end(); shape++) if (*shape != origin_shape && (*shape)->intersect(ray, dist) && dist >= stack[entry].t) { nearest_shape = *shape; nearest_distance = dist; } if (nearest_shape) return nearest_shape; entry = exit; /* retrieve the pointer to the next node, it is possible that ray traversal terminates */ node = stack[entry].node; exit = stack[entry].prev; } /* ray leaves the scene */ return NULL;}// this should save whole kd-tree with triangles distributed into leavesvoid KdTree::save(ostream &str, KdNode *node){ if (!built) return; if (node == NULL) node = root; if (node->isLeaf()) str << "(leaf: " << node->getShapes()->size() << " shapes)"; else { str << "(split " << (char)('x'+node->getAxis()) << " at " << node->getSplit() << "; L="; save(str, node->getLeftChild()); str << "; R="; save(str, node->getRightChild()); str << ";)"; }}// load kd-tree from file/streamvoid KdTree::load(istream &str, KdNode *node){}