memory optimization for octree
fixed some visual artifacts in textures C++ demo and set ambient occlussion for rendering (-r)
/*
* Pyrit Ray Tracer
* file: kdtree.cc
*
* Radek Brich, 2006-2007
*/
#include <algorithm>
#include <stack>
#include "common.h"
#include "kdtree.h"
class SortableShape
{
public:
Shape *shape;
BBox bbox;
short axis;
short mark;
SortableShape(Shape *aShape, short &aAxis): shape(aShape), axis(aAxis), mark(0)
{ bbox = shape->get_bbox(); };
friend bool operator<(const SortableShape& a, const SortableShape& b)
{ return a.bbox.L.cell[a.axis] < b.bbox.L.cell[b.axis]; };
void setAxis(short aAxis) { axis = aAxis; };
void setMark() { mark = 1; };
short hasMark() { return mark; };
};
class SortableShapeList: public vector<SortableShape>
{
public:
SortableShapeList(ShapeList *shapes, short axis)
{
ShapeList::iterator shape;
for (shape = shapes->begin(); shape != shapes->end(); shape++)
push_back(SortableShape(*shape, axis));
};
};
class SplitPos
{
public:
Float pos;
int lnum, rnum;
SplitPos(): pos(0.0), lnum(0), rnum(0) {};
SplitPos(Float &aPos): pos(aPos), lnum(0), rnum(0) {};
friend bool operator<(const SplitPos& a, const SplitPos& b)
{ return a.pos < b.pos; };
friend bool operator==(const SplitPos& a, const SplitPos& b)
{ return a.pos == b.pos; };
};
class SplitList: public vector<SplitPos>
{
};
// stack element for kd-tree traversal
class StackElem
{
public:
KdNode* node; /* pointer to far child */
Float t; /* the entry/exit signed distance */
Vector3 pb; /* the coordinates of entry/exit point */
StackElem(KdNode *anode, const Float &at, const Vector3 &apb):
node(anode), t(at), pb(apb) {};
};
// ----------------------------------------
KdNode::~KdNode()
{
if (isLeaf())
delete shapes;
else
delete[] children;
}
void KdNode::subdivide(BBox bbox, int maxdepth)
{
if (maxdepth <= 0 || shapes->size() <= 2)
{
setLeaf();
return;
}
// choose split axis
axis = 0;
if (bbox.h() > bbox.w() && bbox.h() > bbox.d())
axis = 1;
if (bbox.d() > bbox.w() && bbox.d() > bbox.h())
axis = 2;
// *** find optimal split position
SortableShapeList sslist(shapes, axis);
sort(sslist.begin(), sslist.end());
SplitList splitlist;
SortableShapeList::iterator sh;
for (sh = sslist.begin(); sh != sslist.end(); sh++)
{
splitlist.push_back(SplitPos(sh->bbox.L.cell[axis]));
splitlist.push_back(SplitPos(sh->bbox.H.cell[axis]));
}
sort(splitlist.begin(), splitlist.end());
// remove duplicate splits
splitlist.resize(unique(splitlist.begin(), splitlist.end()) - splitlist.begin());
// find all posible splits
SplitList::iterator spl;
int rest;
for (spl = splitlist.begin(); spl != splitlist.end(); spl++)
{
for (sh = sslist.begin(), rest = sslist.size(); sh != sslist.end(); sh++, rest--)
{
if (sh->hasMark())
{
spl->lnum++;
continue;
}
// if shape is completely contained in split plane
if (spl->pos == sh->bbox.L.cell[axis] == sh->bbox.H.cell[axis])
{
if (spl->pos - bbox.L.cell[axis] < bbox.H.cell[axis] - spl->pos)
{
// left subcell is smaller -> if not empty, put shape here
if (spl->lnum)
spl->lnum++;
else
spl->rnum++;
} else {
// right subcell is smaller
if (spl->rnum)
spl->rnum++;
else
spl->lnum++;
}
sh->setMark();
} else
// if shape is on left side of split plane
if (sh->bbox.H.cell[axis] <= spl->pos)
{
spl->lnum++;
sh->setMark();
} else
// if shape occupies both sides of split plane
if (sh->bbox.L.cell[axis] < spl->pos && sh->bbox.H.cell[axis] > spl->pos)
{
spl->lnum++;
spl->rnum++;
} else
// if shape is on right side of split plane
if (sh->bbox.L.cell[axis] >= spl->pos)
{
spl->rnum += rest;
break;
}
}
}
// choose best split pos
const Float K = 1.4; // constant, K = cost of traversal / cost of ray-triangle intersection
Float SAV = (bbox.w()*bbox.h() + bbox.w()*bbox.d() + bbox.h()*bbox.d()); // surface area of node
Float cost = SAV * (K + shapes->size()); // initial cost = non-split cost
bool leaf = true;
BBox lbb = bbox;
BBox rbb = bbox;
for (spl = splitlist.begin(); spl != splitlist.end(); spl++)
{
// calculate SAH cost of this split
lbb.H.cell[axis] = spl->pos;
rbb.L.cell[axis] = spl->pos;
Float SAL = (lbb.w()*lbb.h() + lbb.w()*lbb.d() + lbb.h()*lbb.d());
Float SAR = (rbb.w()*rbb.h() + rbb.w()*rbb.d() + rbb.h()*rbb.d());
Float splitcost = K*SAV + SAL*(K+spl->lnum) + SAR*(K+spl->rnum);
if (splitcost < cost)
{
leaf = false;
cost = splitcost;
split = spl->pos;
}
}
if (leaf)
{
setLeaf();
return;
}
#if 0
// export kd-tree as .obj for visualization
// this would be hard to reconstruct later
static ofstream F("kdtree.obj");
Vector3 v;
static int f=0;
v.cell[axis] = split;
v.cell[(axis+1)%3] = bbox.L.cell[(axis+1)%3];
v.cell[(axis+2)%3] = bbox.L.cell[(axis+2)%3];
F << "v " << v.x << " " << v.y << " " << v.z << endl;
v.cell[(axis+1)%3] = bbox.L.cell[(axis+1)%3];
v.cell[(axis+2)%3] = bbox.H.cell[(axis+2)%3];
F << "v " << v.x << " " << v.y << " " << v.z << endl;
v.cell[(axis+1)%3] = bbox.H.cell[(axis+1)%3];
v.cell[(axis+2)%3] = bbox.H.cell[(axis+2)%3];
F << "v " << v.x << " " << v.y << " " << v.z << endl;
v.cell[(axis+1)%3] = bbox.H.cell[(axis+1)%3];
v.cell[(axis+2)%3] = bbox.L.cell[(axis+2)%3];
F << "v " << v.x << " " << v.y << " " << v.z << endl;
F << "f " << f+1 << " " << f+2 << " " << f+3 << " " << f+4 << endl;
f += 4;
#endif
// split this node
delete shapes;
children = new KdNode[2];
int state = 0;
for (sh = sslist.begin(); sh != sslist.end(); sh++)
{
// if shape is on left side of split plane
if (state == 1)
{ // only right
children[1].addShape(sh->shape);
continue;
}
if (state == 0)
{
if (sh->bbox.H.cell[axis] < split)
{ // left
children[0].addShape(sh->shape);
} else
if (sh->bbox.H.cell[axis] > split)
{
if (sh->bbox.L.cell[axis] < split)
{ // both
children[0].addShape(sh->shape);
children[1].addShape(sh->shape);
} else
{ // right
children[1].addShape(sh->shape);
state = 1;
}
} else
{ // H == split
if (sh->bbox.L.cell[axis] < split)
{ // left
children[0].addShape(sh->shape);
} else
{ // contained
if (split - bbox.L.cell[axis] < bbox.H.cell[axis] - split)
{
// left subcell is smaller -> if not empty, put shape here
if (children[0].shapes->size())
children[0].addShape(sh->shape);
else
children[1].addShape(sh->shape);
} else {
// right subcell is smaller
if (children[1].shapes->size())
children[1].addShape(sh->shape);
else
children[0].addShape(sh->shape);
}
}
}
}
}
lbb.H.cell[axis] = split;
rbb.L.cell[axis] = split;
children[0].subdivide(lbb, maxdepth-1);
children[1].subdivide(rbb, maxdepth-1);
}
void KdTree::build()
{
dbgmsg(1, "* building kd-tree\n");
root = new KdNode();
ShapeList::iterator shape;
for (shape = shapes.begin(); shape != shapes.end(); shape++)
root->addShape(*shape);
root->subdivide(bbox, max_depth);
built = true;
}
/* algorithm by Vlastimil Havran, Heuristic Ray Shooting Algorithms, appendix C */
Shape *KdTree::nearest_intersection(const Shape *origin_shape, const Ray &ray,
Float &nearest_distance)
{
Float a, b; /* entry/exit signed distance */
Float t; /* signed distance to the splitting plane */
/* if we have no tree, fall back to naive test */
if (!built)
return Container::nearest_intersection(origin_shape, ray, nearest_distance);
if (!bbox.intersect(ray, a, b))
return NULL;
/* pointers to the far child node and current node */
KdNode *farchild, *node;
node = root; /* start from the kd-tree root node */
/* std vector is much faster than stack */
vector<StackElem*> st;
StackElem *enPt = new StackElem(NULL, a,
/* distinguish between internal and external origin of a ray*/
a >= 0.0 ?
ray.o + ray.dir * a : /* external */
ray.o); /* internal */
/* setup initial exit point in the stack */
StackElem *exPt = new StackElem(NULL, b, ray.o + ray.dir * b);
st.push_back(exPt);
/* loop, traverse through the whole kd-tree, until an object is intersected or ray leaves the scene */
while (node)
{
exPt = st.back();
/* loop until a leaf is found */
while (!node->isLeaf())
{
/* retrieve position of splitting plane */
Float splitVal = node->getSplit();
short axis = node->getAxis();
if (enPt->pb[axis] <= splitVal)
{
if (exPt->pb[axis] <= splitVal)
{ /* case N1, N2, N3, P5, Z2, and Z3 */
node = node->getLeftChild();
continue;
}
if (exPt->pb[axis] == splitVal)
{ /* case Z1 */
node = node->getRightChild();
continue;
}
/* case N4 */
farchild = node->getRightChild();
node = node->getLeftChild();
}
else
{ /* (enPt->pb[axis] > splitVal) */
if (splitVal < exPt->pb[axis])
{
/* case P1, P2, P3, and N5 */
node = node->getRightChild();
continue;
}
/* case P4*/
farchild = node->getLeftChild();
node = node->getRightChild();
}
/* case P4 or N4 . . . traverse both children */
/* signed distance to the splitting plane */
t = (splitVal - ray.o.cell[axis]) / ray.dir.cell[axis];
/* setup the new exit point and push it onto stack */
exPt = new StackElem(farchild, t, Vector3());
exPt->pb.cell[axis] = splitVal;
exPt->pb.cell[(axis+1)%3] = ray.o.cell[(axis+1)%3] + t * ray.dir.cell[(axis+1)%3];
exPt->pb.cell[(axis+2)%3] = ray.o.cell[(axis+2)%3] + t * ray.dir.cell[(axis+2)%3];
st.push_back(exPt);
} /* while */
/* current node is the leaf . . . empty or full */
/* "intersect ray with each object in the object list, discarding "
"those lying before stack[enPt].t or farther than stack[exPt].t" */
Shape *nearest_shape = NULL;
Float dist = exPt->t;
ShapeList::iterator shape;
for (shape = node->shapes->begin(); shape != node->shapes->end(); shape++)
if (*shape != origin_shape && (*shape)->intersect(ray, dist)
&& dist >= enPt->t)
{
nearest_shape = *shape;
nearest_distance = dist;
}
delete enPt;
if (nearest_shape)
{
while (!st.empty())
{
delete st.back();
st.pop_back();
}
return nearest_shape;
}
enPt = exPt;
/* retrieve the pointer to the next node, it is possible that ray traversal terminates */
node = enPt->node;
st.pop_back();
} /* while */
delete enPt;
/* ray leaves the scene */
return NULL;
}
// this should save whole kd-tree with triangles distributed into leaves
void KdTree::save(ostream &str, KdNode *node)
{
if (!built)
return;
if (node == NULL)
node = root;
if (node->isLeaf())
str << "(leaf: " << node->shapes->size() << " shapes)";
else
{
str << "(split " << (char)('x'+node->getAxis()) << " at " << node->getSplit() << "; L=";
save(str, node->getLeftChild());
str << "; R=";
save(str, node->getRightChild());
str << ";)";
}
}
// load kd-tree from file/stream
void KdTree::load(istream &str, KdNode *node)
{
}