move "smooth" attribute from Triangle to Material
lwo reader enhancements - implement more chunk types, support for smoothing flag and SMAN (smoothing max. angle)
/* * matrix.h: Matrix class, currently not used * * This file is part of Pyrit Ray Tracer. * * Copyright 2006, 2007 Radek Brich * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */#ifndef MATRIX_H#define MATRIX_H#include "vector.h"using namespace std;/** * matrix helper class */class Matrix{public: Float data[4][4]; Matrix(): {}; // sum friend Matrix operator+(const Matrix &a, const Matrix &b) { Matrix m = Matrix(); for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) m.data[i][j] = a.data[i][j] + b.data[i][j]; return m; } // difference friend Matrix operator-(const Matrix &a, const Matrix &b) { Matrix m = Matrix(); for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) m.data[i][j] = a.data[i][j] - b.data[i][j]; return m; } // product friend Matrix operator*(const Matrix &a, const Matrix &b) { Matrix m = Matrix(); for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) m.data[i][j] = a.data[i][0] * b.data[0][j] + a.data[i][1] * b.data[1][j] + a.data[i][2] * b.data[2][j] + a.data[i][3] * b.data[3][j]; return m; } // negative Matrix operator-() { Matrix m = Matrix(); for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) m.data[i][j] = -data[i][j]; return m; } // product of matrix and scalar Matrix operator*(const Float &f) { Matrix m = Matrix(); for (int i = 0; i < 4; i++) for (int j = 0; j < 4; j++) m.data[i][j] = data[i][j] * f; return m; } friend Matrix operator*(const Float &f, Matrix &m) { return m * f; }; // product of matrix and vector Vector3 operator*(const Vector3 &v) { Vector3 u = Vector3(); u.x = data[0][0] * v.x + data[0][1] * v.y + data[0][2] * v.z + data[0][3] * v.w; u.y = data[1][0] * v.x + data[1][1] * v.y + data[1][2] * v.z + data[1][3] * v.w; u.z = data[2][0] * v.x + data[2][1] * v.y + data[2][2] * v.z + data[2][3] * v.w; u.w = data[3][0] * v.x + data[3][1] * v.y + data[3][2] * v.z + data[3][3] * v.w; return u; } friend Matrix operator*(const Vector3 &v, Matrix &m) { return m * v; };};#endif