pyrit_verbosity: new variable for controlling amount of output, see common.h
fix Makefile dependencies for raytracer_module
fix bad view in buddha.py caused by last commit
/*
* C++ RayTracer
* file: raytracer.cc
*
* Radek Brich, 2006
*/
#ifdef PTHREADS
#include <pthread.h>
#endif
#include <stdio.h>
#include <malloc.h>
#include "raytracer.h"
int pyrit_verbosity = 2;
// Hammersley spherical point distribution
// http://www.cse.cuhk.edu.hk/~ttwong/papers/udpoint/udpoints.html
Vector3 Raytracer::SphereDistribute(int i, int n, Float extent, Vector3 &normal)
{
Float p, t, st, phi, phirad;
int kk;
t = 0;
for (p=0.5, kk=i; kk; p*=0.5, kk>>=1)
if (kk & 1)
t += p;
t = 1.0 + (t - 1.0)*extent;
phi = (i + 0.5) / n;
phirad = phi * 2.0 * M_PI;
st = sqrt(1.0 - t*t);
Float x, y, z, xx, yy, zz, q;
x = st * cos(phirad);
y = st * sin(phirad);
z = t;
// rotate against Y axis
q = acos(normal.z);
zz = z*cos(q) - x*sin(q);
xx = z*sin(q) + x*cos(q);
yy = y;
// rotate against Z axis
q = atan2f(normal.y, normal.x);
x = xx*cos(q) - yy*sin(q);
y = xx*sin(q) + yy*cos(q);
z = zz;
return Vector3(x, y, z);
}
// ---- tyto dve funkce budou v budouci verzi metody objektu PhongShader
// calculate shader function
// P is point of intersection, N normal in this point
Colour PhongShader_ambient(Material &mat, Vector3 &P)
{
Colour col = mat.texture.colour; //mat.texture.evaluate(P);
// ambient
return mat.ambient * col;
}
/*
P is point of intersection,
N normal in this point,
R direction of reflected ray,
V direction to the viewer
*/
Colour PhongShader_calculate(Material &mat, Vector3 &P, Vector3 &N, Vector3 &R, Vector3 &V,
Light &light)
{
Colour I = Colour();
Vector3 L = light.pos - P;
L.normalize();
Float L_dot_N = dot(L, N);
Float R_dot_V = dot(R, V);
Colour col = mat.texture.colour; //mat.texture.evaluate(P);
// diffuse
I = mat.diffuse * col * light.colour * L_dot_N;
// specular
if (R_dot_V > 0)
I += mat.specular * light.colour * powf(R_dot_V, mat.shininess);
return I;
}
Colour Raytracer::raytrace(Ray &ray, int depth, Shape *origin_shape)
{
Float nearest_distance = Inf;
Shape *nearest_shape = top->nearest_intersection(origin_shape, ray, nearest_distance);
if (nearest_shape == NULL) {
return bg_colour;
} else {
Colour acc = Colour();
Vector3 P = ray.o + ray.dir * nearest_distance; // point of intersection
Vector3 normal = nearest_shape->normal(P);
// make shapes double sided
if (dot(normal, ray.dir) > 0.0)
normal = - normal;
acc = PhongShader_ambient(*nearest_shape->material, P);
vector<Light*>::iterator light;
for (light = lights.begin(); light != lights.end(); light++) {
Vector3 jo, L = (*light)->pos - P; // direction vector to light
L.normalize();
Float L_dot_N = dot(L, normal);
if (L_dot_N > 0) {
// test if this light is occluded (sharp shadows)
if ((*light)->cast_shadows) {
Ray shadow_ray = Ray(P, L);
Float dist = FLT_MAX;
if (top->nearest_intersection(nearest_shape, shadow_ray, dist))
continue;
}
// shading function
Vector3 R = L - 2.0 * L_dot_N * normal;
acc += PhongShader_calculate(*nearest_shape->material,
P, normal, R, ray.dir, **light);
}
}
// reflection
Vector3 newdir = ray.dir - 2.0 * dot(ray.dir, normal) * normal;
if (depth < max_depth && nearest_shape->material->reflection > 0.01) {
Ray newray = Ray(P, newdir);
Colour refl_col = raytrace(newray, depth + 1, nearest_shape);
acc += nearest_shape->material->reflection * refl_col;
}
// refraction
/* ... */
// ambient occlusion
if (ao_samples)
{
Float miss = 0;
for (int i = 0; i < ao_samples; i++) {
Vector3 dir = SphereDistribute(i, ao_samples, ao_angle, normal);
Ray ao_ray = Ray(P, dir);
Float dist = ao_distance;
Shape *shape_in_way = top->nearest_intersection(nearest_shape, ao_ray, dist);
if (shape_in_way == NULL)
miss += 1.0;
else
miss += dist / ao_distance;
}
Float ao_intensity = miss / ao_samples;
acc = acc * ao_intensity;
}
return acc;
}
}
static void *renderrow(void *data)
{
RenderrowData *d = (RenderrowData*) data;
int subsample = d->rt->getSubsample();
Float subsample2 = 1.0/(subsample*subsample);
int ww = d->w*3;
Vector3 dir = d->dfix;
for (int x = 0; x < d->w; x += subsample) {
// generate a ray from eye passing through this pixel
#if OVERSAMPLING
// 5x oversampling
Colour c = Colour();
for (int i = 0; i < 5; i++)
{
Float osax[] = {0.0, -0.4, +0.4, +0.4, -0.4};
Float osay[] = {0.0, -0.4, -0.4, +0.4, +0.4};
Vector3 tmpdir = dir + osax[i]*d->dx + osay[i]*d->dy;
tmpdir.normalize();
Ray ray(d->eye, tmpdir);
c += d->rt->raytrace(ray, 0, NULL);
}
c = c * (1./5);
#else
// no oversampling
dir.normalize();
Ray ray(d->eye, dir);
Colour c = d->rt->raytrace(ray, 0, NULL);
if (subsample > 1)
{
Colour ic;
// top-left is 'c'
// top-right
Vector3 tmpdir = dir + (subsample-1)*d->dx;
tmpdir.normalize();
Ray ray(d->eye, tmpdir);
Colour c2 = d->rt->raytrace(ray, 0, NULL);
// bottom right
tmpdir += (subsample-1)*d->dy;
tmpdir.normalize();
ray.dir = tmpdir;
Colour c4 = d->rt->raytrace(ray, 0, NULL);
// bottom left
tmpdir = dir + (subsample-1)*d->dy;
tmpdir.normalize();
ray.dir = tmpdir;
Colour c3 = d->rt->raytrace(ray, 0, NULL);
// are the colors similar?
Float m = (c-c2).mag2();
m = max(m, (c2-c3).mag2());
m = max(m, (c3-c4).mag2());
m = max(m, (c4-c).mag2());
if (m < 0.001)
{
// interpolate
Float *i = d->iter;
for (int x = 0; x < subsample; x++)
{
for (int y = 0; y < subsample; y++)
{
ic = c*(subsample-x)*(subsample-y)*subsample2
+ c2*(x)*(subsample-y)*subsample2
+ c3*(subsample-x)*(y)*subsample2
+ c4*(x)*(y)*subsample2;
*(i + ww*y) = ic.r;
*(i + ww*y + 1) = ic.g;
*(i + ww*y + 2) = ic.b;
}
i += 3;
}
d->iter = i;
}
else
{
// render
Vector3 tmpdir = dir;
// first column
*(d->iter) = c.r;
*(d->iter + 1) = c.g;
*(d->iter + 2) = c.b;
for (int y = 1; y < subsample-1; y++)
{
Vector3 tmp2dir = tmpdir + y*d->dy;
tmp2dir.normalize();
ray.dir = tmp2dir;
ic = d->rt->raytrace(ray, 0, NULL);
*(d->iter + ww*y) = ic.r;
*(d->iter + ww*y + 1) = ic.g;
*(d->iter + ww*y + 2) = ic.b;
}
*(d->iter + ww*(subsample-1)) = c3.r;
*(d->iter + ww*(subsample-1) + 1) = c3.g;
*(d->iter + ww*(subsample-1) + 2) = c3.b;
d->iter += 3;
tmpdir += d->dx;
// middle
for (int x = 1; x < subsample-1; x++)
{
for (int y = 0; y < subsample; y++)
{
Vector3 tmp2dir = tmpdir + y*d->dy;
tmp2dir.normalize();
ray.dir = tmp2dir;
ic = d->rt->raytrace(ray, 0, NULL);
*(d->iter + ww*y) = ic.r;
*(d->iter + ww*y + 1) = ic.g;
*(d->iter + ww*y + 2) = ic.b;
}
d->iter += 3;
tmpdir += d->dx;
}
// last column
*(d->iter) = c2.r;
*(d->iter + 1) = c2.g;
*(d->iter + 2) = c2.b;
for (int y = 1; y < subsample-1; y++)
{
Vector3 tmp2dir = tmpdir + y*d->dy;
tmp2dir.normalize();
ray.dir = tmp2dir;
ic = d->rt->raytrace(ray, 0, NULL);
*(d->iter + ww*y) = ic.r;
*(d->iter + ww*y + 1) = ic.g;
*(d->iter + ww*y + 2) = ic.b;
}
*(d->iter + ww*(subsample-1)) = c4.r;
*(d->iter + ww*(subsample-1) + 1) = c4.g;
*(d->iter + ww*(subsample-1) + 2) = c4.b;
d->iter += 3;
}
}
#endif
if (subsample <= 1)
{
*d->iter++ = c.r;
*d->iter++ = c.g;
*d->iter++ = c.b;
}
dir += d->dx*subsample;
}
#ifdef PTHREADS
pthread_exit((void *)d);
#endif
return (void *)d;
}
void Raytracer::render(int w, int h, Float *buffer)
{
if (!camera || !top || !buffer)
return;
RenderrowData *d;
Float S = 0.5/w;
Vector3 dfix = camera->u*(-w/2.0*S/camera->f)
+ camera->v*(h/2.0*S/camera->f) + camera->p;
Vector3 dx = camera->u * (S/camera->f);
Vector3 dy = camera->v * (-S/camera->f);
#ifdef PTHREADS
dbgmsg(1, "* pthreads enabled, using %d threads\n", num_threads);
pthread_t threads[num_threads];
for (int t = 0; t < num_threads; t++)
threads[t] = pthread_self();
int t = 0;
#endif
/* for each pixel... */
dbgmsg(1, "* raytracing...\n");
dbgmsg(2, "- row 0 ( 0%% done)");
for (int y = 0; y < h; y += subsample)
{
d = (RenderrowData*) malloc(sizeof(RenderrowData));
d->rt = this;
d->w = w;
d->eye = camera->eye;
d->dfix = dfix;
d->dx = dx;
d->dy = dy;
d->iter = buffer + y*3*w;
#ifdef PTHREADS
/* create new thread and increase 't' */
int rc = pthread_create(&threads[t++], NULL, renderrow, (void *)d);
if (rc) {
dbgmsg(0, "\nE pthread_create unsuccessful, return code was %d\n", rc);
exit(1);
}
/* when 't' owerflows, reset it */
if (t >= num_threads)
t = 0;
/* wait for next thread in fifo queue, so the descriptor can be reused;
this also limits number of running threads */
if (!pthread_equal(threads[t], pthread_self()))
if (pthread_join(threads[t], (void**)&d) == 0)
free(d);
#else
renderrow((void *)d);
free(d);
#endif
dfix += dy*subsample;
dbgmsg(2, "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b%4d (%2d%% done)", y, y*100/(h-1));
}
dbgmsg(2, "\n");
#ifdef PTHREADS
dbgmsg(2, "- waiting for threads to finish\n");
for (t = 0; t < num_threads; t++)
if (pthread_join(threads[t], (void**)&d) == 0)
free(d);
#endif
}
void Raytracer::addlight(Light *light)
{
lights.push_back(light);
}
void Raytracer::ambientocclusion(int samples, Float distance, Float angle)
{
ao_samples = samples;
ao_distance = distance;
ao_angle = angle;
if (ao_distance == 0)
/* 0 ==> Inf */
ao_distance = FLT_MAX;
}