realtime_dragon demo: now fullsize model + octree
realtime_bunny demo: bigger resolution
Box, Sphere: implemented AABB intersection
new stop condition for octree building (when number of shapes in children >= 6x shapes in parent node)
fixes for octree traversal
/*
* Pyrit Ray Tracer
* file: scene.h
*
* Radek Brich, 2006-2007
*/
#ifndef SCENE_H
#define SCENE_H
#include <vector>
#include <typeinfo>
#include "noise.h"
#include "vector.h"
#include "quaternion.h"
/*
triangle intersection alghoritm
chooses are:
TRI_PLUCKER
TRI_BARI
TRI_BARI_PRE
*/
#if !defined(TRI_PLUCKER) && !defined(TRI_BARI) && !defined(TRI_BARI_PRE)
# define TRI_BARI_PRE
#endif
using namespace std;
class Ray
{
public:
Vector3 o, dir;
Ray(const Vector3 &ao, const Vector3 &adir):
o(ao), dir(adir) {};
};
class Camera
{
public:
Vector3 eye, p, u, v;
Float f;
Camera(): eye(0,0,10), p(0,0,-1), u(-1,0,0), v(0,1,0), f(3.14/4.0) {};
Camera(const Vector3 &C, const Vector3 &ap, const Vector3 &au, const Vector3 &av):
eye(C), p(ap), u(au), v(av), f(3.14/4.0) {};
void setEye(const Vector3 &aeye) { eye = aeye; };
void setFocalLength(const Float af) { f = af; };
void rotate(const Quaternion &q);
void move(const Float fw, const Float left, const Float up);
};
/* axis-aligned bounding box */
class BBox
{
public:
Vector3 L;
Vector3 H;
BBox(): L(), H() {};
BBox(const Vector3 aL, const Vector3 aH): L(aL), H(aH) {};
Float w() { return H.x-L.x; };
Float h() { return H.y-L.y; };
Float d() { return H.z-L.z; };
bool intersect(const Ray &ray, Float &a, Float &b);
};
class Light
{
public:
Vector3 pos;
Colour colour;
bool cast_shadows;
Light(const Vector3 &position, const Colour &acolour):
pos(position), colour(acolour), cast_shadows(true) {};
void castShadows(bool cast) { cast_shadows = cast; };
};
class Texture
{
public:
Colour colour;
Colour evaluate(Vector3 point)
{
Float sum = 0.0;
for (int i = 1; i < 5; i++)
sum += fabsf(perlin(point.x*i, point.y*i, point.z*i))/i;
Float value = sinf(point.x + sum)/2 + 0.5;
return Colour(value*colour.r, value*colour.g, value*colour.b);
};
};
class Material
{
public:
Float ambient, diffuse, specular, shininess; // Phong constants
Float reflectivity; // how much reflective is the surface
Float transmissivity, refract_index; // part of light which can be refracted; index of refraction
Texture texture;
Material(const Colour &acolour) {
texture.colour = acolour;
ambient = 0.2;
diffuse = 0.8;
specular = 0.2;
shininess = 0.5;
reflectivity = 0.2;
transmissivity = 0.0;
refract_index = 1.3;
}
void setPhong(const Float amb, const Float dif, const Float spec, const Float shin)
{ ambient = amb; diffuse = dif; specular = spec; shininess = shin; };
void setReflectivity(const Float refl) { reflectivity = refl; };
void setTransmissivity(const Float trans, const Float rindex)
{ transmissivity = trans; refract_index = rindex; };
};
class Shape
{
public:
Material *material;
Shape() {};
virtual ~Shape() {};
// first intersection point
virtual bool intersect(const Ray &ray, Float &dist) const = 0;
// all intersections (only for CSG)
virtual bool intersect_all(const Ray &ray, Float dist, vector<Float> &allts) const = 0;
// intersection with AABB
virtual bool intersect_bbox(const BBox &bbox) const = 0;
// normal at point P
virtual const Vector3 normal(const Vector3 &P) const = 0;
virtual BBox get_bbox() const = 0;
};
class ShapeList: public vector<Shape*>
{
};
class Sphere: public Shape
{
Float sqr_radius;
Float inv_radius;
public:
Vector3 center;
Float radius;
Sphere(const Vector3 &acenter, const Float aradius, Material *amaterial):
sqr_radius(aradius*aradius), inv_radius(1.0f/aradius),
center(acenter), radius(aradius) { material = amaterial; }
bool intersect(const Ray &ray, Float &dist) const;
bool intersect_all(const Ray &ray, Float dist, vector<Float> &allts) const;
bool intersect_bbox(const BBox &bbox) const;
const Vector3 normal(const Vector3 &P) const { return (P - center) * inv_radius; };
BBox get_bbox() const;
};
class Box: public Shape
{
Vector3 L;
Vector3 H;
public:
Box(const Vector3 &aL, const Vector3 &aH, Material *amaterial): L(aL), H(aH)
{
for (int i = 0; i < 3; i++)
if (L.cell[i] > H.cell[i])
swap(L.cell[i], H.cell[i]);
material = amaterial;
};
bool intersect(const Ray &ray, Float &dist) const;
bool intersect_all(const Ray &ray, Float dist, vector<Float> &allts) const { return false; };
bool intersect_bbox(const BBox &bbox) const;
const Vector3 normal(const Vector3 &P) const;
BBox get_bbox() const { return BBox(L, H); };
};
class Vertex
{
public:
Vector3 P;
Vertex(const Vector3 &aP): P(aP) {};
};
class NormalVertex: public Vertex
{
public:
Vector3 N;
NormalVertex(const Vector3 &aP): Vertex(aP) {};
NormalVertex(const Vector3 &aP, const Vector3 &aN): Vertex(aP), N(aN) {};
const Vector3 &getNormal() { return N; };
void setNormal(const Vector3 &aN) { N = aN; };
};
class Triangle: public Shape
{
#ifdef TRI_BARI_PRE
Float nu, nv, nd;
int k; // dominant axis
Float bnu, bnv;
Float cnu, cnv;
#endif
#ifdef TRI_BARI
int k; // dominant axis
#endif
#ifdef TRI_PLUCKER
Float pla[6], plb[6], plc[6];
#endif
Vector3 N;
bool smooth;
const Vector3 smooth_normal(const Vector3 &P) const
{
#ifdef TRI_BARI_PRE
const Vector3 &NA = static_cast<NormalVertex*>(A)->N;
const Vector3 &NB = static_cast<NormalVertex*>(B)->N;
const Vector3 &NC = static_cast<NormalVertex*>(C)->N;
static const int modulo3[5] = {0,1,2,0,1};
register const int ku = modulo3[k+1];
register const int kv = modulo3[k+2];
const Float pu = P[ku] - A->P[ku];
const Float pv = P[kv] - A->P[kv];
const Float u = pv * bnu + pu * bnv;
const Float v = pu * cnv + pv * cnu;
Vector3 n = NA + u * (NB - NA) + v * (NC - NA);
n.normalize();
return n;
#else
return N; // not implemented for other algorithms
#endif
};
public:
Vertex *A, *B, *C;
Triangle(Vertex *aA, Vertex *aB, Vertex *aC, Material *amaterial);
bool intersect(const Ray &ray, Float &dist) const;
bool intersect_all(const Ray &ray, Float dist, vector<Float> &allts) const {return false;};
bool intersect_bbox(const BBox &bbox) const;
const Vector3 normal(const Vector3 &P) const { return (smooth ? smooth_normal(P) : N); };
const Vector3 getNormal() const { return N; };
void setSmooth() { smooth = true; };//(typeid(*A) == typeid(*B) == typeid(*C) == typeid(NormalVertex)); };
void setFlat() { smooth = false; };
bool getSmooth() const { return smooth; };
BBox get_bbox() const;
};
#endif