/**
* @file scene.h
* @brief Classes for objects in scene (other than shapes).
*
* This file is part of Pyrit Ray Tracer.
*
* Copyright 2006, 2007, 2008 Radek Brich
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef SCENE_H
#define SCENE_H
#include <vector>
#include <typeinfo>
#include "common.h"
#include "sampler.h"
#include "vector.h"
#include "quaternion.h"
/**
* A ray
*/
class Ray
{
public:
Vector o; ///< Origin
Vector dir; ///< Normalized direction
Ray(): o(), dir() {};
Ray(const Vector &ao, const Vector &adir):
o(ao), dir(adir) {};
};
#ifndef NO_SIMD
/**
* Packet of four rays for SIMD accelerated packet tracing.
*/
class RayPacket
{
public:
VectorPacket o; ///< Packet of four origins
VectorPacket dir; ///< Directions
VectorPacket invdir; ///< Inverted directions (1/dir)
RayPacket(): o(), dir() {};
RayPacket(const VectorPacket &ao, const VectorPacket &adir):
o(ao), dir(adir), invdir(mOne/adir) {};
/** Index operator: get ray 'i' */
Ray operator[](int i) const
{
return Ray(
Vector(o.x[i], o.y[i], o.z[i]),
Vector(dir.x[i], dir.y[i], dir.z[i]));
};
};
#endif
/**
* Standard ray tracing camera
*/
class Camera
{
Vector eye, p, u, v;
Float F;
public:
Camera(): eye(0,0,10), p(0,0,-1), u(-1,0,0), v(0,1,0), F(2*tan(PI/8)) {};
/** Position + p,u,v constructor */
Camera(const Vector &C, const Vector &ap, const Vector &au, const Vector &av):
eye(C), p(ap), u(au), v(av), F(2*tan(PI/8)) {};
/** Look-at constructor */
Camera(const Vector &from, const Vector &lookat, const Vector &up):
eye(from), F(2*tan(PI/8))
{
p = lookat - from; u = cross(up, p);
p.normalize(); u.normalize();
v = cross(p, u);
};
#ifndef NO_SIMD
void *operator new(size_t size) { return _mm_malloc(size, 16); };
void operator delete(void *p) { _mm_free(p); };
#endif
const Vector &getEye() const { return eye; };
const Vector &getp() const { return p; };
const Vector &getu() const { return u; };
const Vector &getv() const { return v; };
const Float &getF() const { return F; };
void setEye(const Vector &aeye) { eye = aeye; };
void setp(const Vector &ap) { p = ap; };
void setu(const Vector &au) { u = au; };
void setv(const Vector &av) { v = av; };
/** set "screen plane" size
* @param[in] F height of the screen plane */
void setF(const Float &aF) { F = aF; };
/** set camera's angle of view (in radians) */
void setAngle(const Float angle) { F = 2*tan(angle/2); };
/** rotate camera using a quaternion */
void rotate(const Quaternion &q);
/** translate the camera in its direction
* @param[in] fw size of forward step
* @param[in] left size of left step
* @param[in] up size of up step
*/
void move(const Float fw, const Float left, const Float up);
/** make the ray from screen sample according the camera's parameters */
const Ray makeRay(const Sample &samp) const
{
Vector dir = normalize(p - (u*samp.x + v*samp.y)*F);
return Ray(eye, dir);
};
/** same as makeRay but for ray packet */
#ifndef NO_SIMD
void makeRayPacket(const Sample *samples, RayPacket &rays) const
{
mfloat4 m1x,m1y,m1z;
mfloat4 m2x,m2y,m2z;
mfloat4 m;
// m1(xyz) = u * samples[i].x
m1x = mshuffle(u.mf4, u.mf4, mShuffle0); // u.x
m1y = mshuffle(u.mf4, u.mf4, mShuffle1); // u.y
m1z = mshuffle(u.mf4, u.mf4, mShuffle2); // u.z
m = mset(samples[3].x, samples[2].x, samples[1].x, samples[0].x);
m1x = mmul(m1x, m);
m1y = mmul(m1y, m);
m1z = mmul(m1z, m);
// m2(xyz) = v * samples[i].y
m2x = mshuffle(v.mf4, v.mf4, mShuffle0); // v.x
m2y = mshuffle(v.mf4, v.mf4, mShuffle1); // v.y
m2z = mshuffle(v.mf4, v.mf4, mShuffle2); // v.z
m = mset(samples[3].y, samples[2].y, samples[1].y, samples[0].y);
m2x = mmul(m2x, m);
m2y = mmul(m2y, m);
m2z = mmul(m2z, m);
// m1(xyz) = (m1 + m2) = (u*samples[i].x + v*samples[i].y)
m1x = madd(m1x, m2x);
m1y = madd(m1y, m2y);
m1z = madd(m1z, m2z);
// m1(xyz) = m1*F = (u*samples[i].x + v*samples[i].y)*F
m = mset1(F);
m1x = mmul(m1x, m);
m1y = mmul(m1y, m);
m1z = mmul(m1z, m);
// m1(xyz) = p - m1 = p - (u*samples[i].x + v*samples[i].y)*F = dir
m2x = mshuffle(p.mf4, p.mf4, mShuffle0); // p.x
m2y = mshuffle(p.mf4, p.mf4, mShuffle1); // p.y
m2z = mshuffle(p.mf4, p.mf4, mShuffle2); // p.z
rays.dir.mx = msub(m2x, m1x);
rays.dir.my = msub(m2y, m1y);
rays.dir.mz = msub(m2z, m1z);
// copy origin
rays.o.mx = mshuffle(eye.mf4, eye.mf4, mShuffle0); // eye.x
rays.o.my = mshuffle(eye.mf4, eye.mf4, mShuffle1); // eye.y
rays.o.mz = mshuffle(eye.mf4, eye.mf4, mShuffle2); // eye.z
rays.dir.normalize();
rays.invdir = mOne / rays.dir;
};
#endif
};
/**
* light object
*/
class Light
{
public:
Vector pos;
Colour colour;
int cast_shadows;
Light():
pos(Vector(0,0,0)), colour(Colour(1,1,1)), cast_shadows(true) {};
Light(const Vector &position, const Colour &acolour):
pos(position), colour(acolour), cast_shadows(true) {};
/** allow shadows from this light */
void castShadows(int cast) { cast_shadows = cast; };
};
/**
* axis-aligned bounding box
*/
class BBox
{
public:
Vector L;
Vector H;
BBox(): L(), H() {};
BBox(const Vector &aL, const Vector &aH): L(aL), H(aH) {};
Float w() const { return H.x-L.x; };
Float h() const { return H.y-L.y; };
Float d() const { return H.z-L.z; };
/**
* intersect ray with the bounding box
* @param[in] ray the ray
* @param[out] a distance of first intersection
* @param[out] b distance of second intersection
* @return true if ray intersects bbox
*/
bool intersect(const Ray &ray, Float &a, Float &b) const;
/** same as intersect() but for ray packets */
#ifndef NO_SIMD
mfloat4 intersect_packet(const RayPacket &rays, mfloat4 &a, mfloat4 &b) const;
#endif
};
#endif