prepare kd-tree traversal for packet tracing (4 rays at once)
RayPacket and VectorPacket structures for packet tracing
remove some redundant const's
/*
* scene.cc: screen sample generation and image reconstruction
*
* This file is part of Pyrit Ray Tracer.
*
* Copyright 2008 Radek Brich
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <math.h>
#include "common.h"
#include "scene.h"
void DefaultSampler::init()
{
phase = 0;
packetable = (subsample <= 1);
}
int DefaultSampler::initSampleSet()
{
static const int gridsamples[] = {1,5,9,16};
const int samples = gridsamples[oversample];
if ( phase == 0 )
{
if (subsample > 1)
{
phase = 1;
sx = -1;
return (w/subsample+1)*(h/subsample+1);
}
else
{
phase = 2;
sx = -1;
return w*h*samples;
}
}
if ( phase == 1 )
{
// finalize subsampling
const Float subsample2 = 1.0/(subsample*subsample);
int num_samples = 0;
Colour ic;
phase = 2;
sx = -1;
for (int y = 0; y < h/subsample; y++)
for (int x = 0; x < w/subsample; x++)
{
int x1 = x*subsample;
int y1 = y*subsample;
int x2 = (x+1)*subsample;
int y2 = (y+1)*subsample;
if (x2 > w-1) x2 = w-1;
if (y2 > h-1) y2 = h-1;
if (x1 == x2 || y1 == y2)
continue;
Float *p;
p = buffer + 3*(y1*w + x1);
Colour c1(*p, *(p+1), *(p+2));
p = buffer + 3*(y1*w + x2);
Colour c2(*p, *(p+1), *(p+2));
p = buffer + 3*(y2*w + x1);
Colour c3(*p, *(p+1), *(p+2));
p = buffer + 3*(y2*w + x2);
Colour c4(*p, *(p+1), *(p+2));
Float m = (c1-c2).mag2();
m = max(m, (c2-c3).mag2());
m = max(m, (c3-c4).mag2());
m = max(m, (c4-c1).mag2());
if (m < 0.002)
{
// interpolate
for (int i = 0; i < subsample; i++)
for (int j = 0; j < subsample; j++)
{
ic = c1*(subsample-i)*(subsample-j)*subsample2
+ c2*(i)*(subsample-j)*subsample2
+ c3*(subsample-i)*(j)*subsample2
+ c4*(i)*(j)*subsample2;
p = buffer + 3*((y1+j)*w + x1+i);
*(p + 0) = ic.r;
*(p + 1) = oversample ? -ic.g : ic.g;
*(p + 2) = ic.b;
}
}
else
{
// mark as to be computed
num_samples += subsample * subsample;
for (int i = 0; i < subsample; i++)
for (int j = 0; j < subsample; j++)
if (oversample || i != 0 || j != 0)
*(buffer + 3*((y1+j)*w + x1+i)) = -1.;
}
}
return num_samples;
}
if ( phase == 2 && oversample )
{
// finalize oversampling
Float *buf;
if (subsample > 1)
for (buf = buffer; buf != buffer + w*h*3; buf += 3)
if (*(buf+1) < 0)
{
// interpolated
*(buf+1) = -*(buf+1);
}
else
{
*buf = *buf * (1.0/samples);
*(buf+1) = *(buf+1) * (1.0/samples);
*(buf+2) = *(buf+2) * (1.0/samples);
}
else
for (buf = buffer; buf != buffer + w*h*3; buf++)
*buf = *buf * (1.0/samples);
}
phase = -1;
return 0;
}
bool DefaultSampler::nextSample(Sample* s)
{
if (phase == 1)
{
// subsampling
if (sx < 0)
{
// first sample
s->x = -(Float)w/h/2.0;
s->y = -0.5;
sx = 0;
sy = 0;
osa_samp = 0;
}
else
{
if (sx == w-1)
{
if (sy == h-1)
return false;
sy += subsample;
if (sy > h-1)
sy = h-1;
sx = 0;
}
else
{
sx += subsample;
if (sx > w-1)
sx = w-1;
}
s->x = (Float)sx/h - (Float)w/h/2.0;
s->y = (Float)sy/h - 0.5;
}
}
else if (phase == 2)
{
/* grid oversampling */
static const int gridsamples[] = {1,5,9,16};
static const Float osa5x[] = {0.0, -0.4, +0.4, +0.4, -0.4};
static const Float osa5y[] = {0.0, -0.4, -0.4, +0.4, +0.4};
static const Float osa9x[] = {-0.34, 0.00, +0.34,
-0.34, 0.00, +0.34, -0.34, 0.00, +0.34};
static const Float osa9y[] = {-0.34, -0.34, -0.34,
0.00, 0.00, 0.00, +0.34, +0.34, +0.34};
static const Float osa16x[] = {-0.375, -0.125, +0.125, +0.375,
-0.375, -0.125, +0.125, +0.375, -0.375, -0.125, +0.125, +0.375,
-0.375, -0.125, +0.125, +0.375};
static const Float osa16y[] = {-0.375, -0.375, -0.375, -0.375,
-0.125, -0.125, -0.125, -0.125, +0.125, +0.125, +0.125, +0.125,
+0.375, +0.375, +0.375, +0.375};
static const Float *osaSx[] = {NULL, osa5x, osa9x, osa16x};
static const Float *osaSy[] = {NULL, osa5y, osa9y, osa16y};
const int samples = gridsamples[oversample];
const Float *osax = osaSx[oversample];
const Float *osay = osaSy[oversample];
if (sx < 0)
{
// first sample
s->x = -(Float)w/h/2.0;
s->y = -0.5;
sx = 0;
sy = 0;
osa_samp = 0;
}
else
{
osa_samp++;
if (oversample && oversample <= 3 && osa_samp < samples)
{
s->x = osax[osa_samp]/h + (Float)sx/h - (Float)w/h/2.0;
s->y = osay[osa_samp]/h + (Float)sy/h - 0.5;
}
else
{
sx++;
if (sx >= w)
{
sx = 0;
sy++;
}
if (sy >= h)
return false;
if (subsample > 1)
{
// find next not interpolated pixel
while ( *(buffer + 3*(sy*w + sx)) >= 0. )
{
sx++;
if (sx >= w)
{
sx = 0;
sy++;
}
if (sy >= h)
return false;
}
}
s->x = (Float)sx/h - (Float)w/h/2.0;
s->y = (Float)sy/h - 0.5;
osa_samp = 0;
}
}
if (osa_samp == 0 && oversample && oversample <= 3)
{
s->x += osax[0]/h;
s->y += osay[0]/h;
Float *buf = buffer + 3*(sy*w + sx);
*(buf++) = 0;
*(buf++) = 0;
*(buf++) = 0;
}
}
s->sx = sx;
s->sy = sy;
s->osa_samp = osa_samp;
return true;
}
void DefaultSampler::saveSample(Sample &samp, Colour &col)
{
Float *buf = buffer + 3*(samp.sy * w + samp.sx);
if (phase == 2 && oversample)
{
*(buf+0) += col.r;
*(buf+1) += col.g;
*(buf+2) += col.b;
}
else
{
*(buf++) = col.r;
*(buf++) = col.g;
*(buf++) = col.b;
}
}