kd-tree building - check all axes for best split, add additional shape-bbox check
extent Container bounds by Eps to fix invisible triangles on borders
new Camera constructor with more intuitive lookat/up vectors
fix camera axes (mirrored images)
better camera angle-of-view
change capitalization of addShape and addLight
/*
* kdtree.cc: KdTree class
*
* This file is part of Pyrit Ray Tracer.
*
* Copyright 2006, 2007 Radek Brich
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <algorithm>
#include <stack>
#include "common.h"
#include "kdtree.h"
class ShapeBound
{
public:
Shape *shape;
Float pos;
bool end;
ShapeBound(Shape *ashape, const Float apos, const bool aend):
shape(ashape), pos(apos), end(aend) {};
friend bool operator<(const ShapeBound& a, const ShapeBound& b)
{
if (a.pos == b.pos)
return a.shape < b.shape;
else
return a.pos < b.pos;
};
};
// stack element for kd-tree traversal
class StackElem
{
public:
KdNode* node; /* pointer to far child */
Float t; /* the entry/exit signed distance */
Vector3 pb; /* the coordinates of entry/exit point */
StackElem(KdNode *anode, const Float &at, const Vector3 &apb):
node(anode), t(at), pb(apb) {};
};
// ----------------------------------------
KdNode::~KdNode()
{
if (isLeaf())
delete shapes;
else
delete[] children;
}
// kd-tree recursive build algorithm, inspired by PBRT (www.pbrt.org)
void KdNode::subdivide(BBox bounds, int maxdepth)
{
if (maxdepth <= 0 || shapes->size() <= 2)
{
setLeaf();
return;
}
// choose split axis
/*axis = 0;
if (bounds.h() > bounds.w() && bounds.h() > bounds.d())
axis = 1;
if (bounds.d() > bounds.w() && bounds.d() > bounds.h())
axis = 2;
*/
// create sorted list of shape bounds (= find all posible splits)
vector<ShapeBound> edges[3];
ShapeList::iterator shape;
for (shape = shapes->begin(); shape != shapes->end(); shape++)
{
BBox shapebounds = (*shape)->get_bbox();
for (int ax = 0; ax < 3; ax++)
{
edges[ax].push_back(ShapeBound(*shape, shapebounds.L[ax], 0));
edges[ax].push_back(ShapeBound(*shape, shapebounds.H[ax], 1));
}
}
for (int ax = 0; ax < 3; ax++)
sort(edges[ax].begin(), edges[ax].end());
// choose best split pos
const Float K = 1.4; // constant, K = cost of traversal / cost of ray-triangle intersection
Float SAV = (bounds.w()*bounds.h() + // surface area of node
bounds.w()*bounds.d() + bounds.h()*bounds.d());
Float cost = SAV * (K + shapes->size()); // initial cost = non-split cost
vector<ShapeBound>::iterator edge, splitedge = edges[2].end();
for (int ax = 0; ax < 3; ax++)
{
int lnum = 0, rnum = shapes->size();
BBox lbb = bounds;
BBox rbb = bounds;
for (edge = edges[ax].begin(); edge != edges[ax].end(); edge++)
{
if (edge->end)
rnum--;
// calculate SAH cost of this split
lbb.H.cell[ax] = edge->pos;
rbb.L.cell[ax] = edge->pos;
Float SAL = (lbb.w()*lbb.h() + lbb.w()*lbb.d() + lbb.h()*lbb.d());
Float SAR = (rbb.w()*rbb.h() + rbb.w()*rbb.d() + rbb.h()*rbb.d());
Float splitcost = K*SAV + SAL*(K + lnum) + SAR*(K + rnum);
if (splitcost < cost)
{
axis = ax;
splitedge = edge;
cost = splitcost;
split = edge->pos;
}
if (!edge->end)
lnum++;
}
}
if (splitedge == edges[2].end())
{
setLeaf();
return;
}
#if 0
// export kd-tree as .obj for visualization
// this would be hard to reconstruct later
static ofstream F("kdtree.obj");
Vector3 v;
static int f=0;
v.cell[axis] = split;
v.cell[(axis+1)%3] = bounds.L.cell[(axis+1)%3];
v.cell[(axis+2)%3] = bounds.L.cell[(axis+2)%3];
F << "v " << v.x << " " << v.y << " " << v.z << endl;
v.cell[(axis+1)%3] = bounds.L.cell[(axis+1)%3];
v.cell[(axis+2)%3] = bounds.H.cell[(axis+2)%3];
F << "v " << v.x << " " << v.y << " " << v.z << endl;
v.cell[(axis+1)%3] = bounds.H.cell[(axis+1)%3];
v.cell[(axis+2)%3] = bounds.H.cell[(axis+2)%3];
F << "v " << v.x << " " << v.y << " " << v.z << endl;
v.cell[(axis+1)%3] = bounds.H.cell[(axis+1)%3];
v.cell[(axis+2)%3] = bounds.L.cell[(axis+2)%3];
F << "v " << v.x << " " << v.y << " " << v.z << endl;
F << "f " << f+1 << " " << f+2 << " " << f+3 << " " << f+4 << endl;
f += 4;
#endif
// split this node
delete shapes;
BBox lbb = bounds;
BBox rbb = bounds;
lbb.H.cell[axis] = split;
rbb.L.cell[axis] = split;
children = new KdNode[2];
for (edge = edges[axis].begin(); edge != splitedge; edge++)
if (!edge->end && edge->shape->intersect_bbox(lbb))
children[0].addShape(edge->shape);
for (edge = splitedge; edge < edges[axis].end(); edge++)
if (edge->end && edge->shape->intersect_bbox(rbb))
children[1].addShape(edge->shape);
children[0].subdivide(lbb, maxdepth-1);
children[1].subdivide(rbb, maxdepth-1);
}
void KdTree::build()
{
dbgmsg(1, "* building kd-tree\n");
root = new KdNode();
ShapeList::iterator shape;
for (shape = shapes.begin(); shape != shapes.end(); shape++)
root->addShape(*shape);
root->subdivide(bbox, max_depth);
built = true;
}
/* algorithm by Vlastimil Havran, Heuristic Ray Shooting Algorithms, appendix C */
Shape *KdTree::nearest_intersection(const Shape *origin_shape, const Ray &ray,
Float &nearest_distance)
{
Float a, b; /* entry/exit signed distance */
Float t; /* signed distance to the splitting plane */
/* if we have no tree, fall back to naive test */
if (!built)
return Container::nearest_intersection(origin_shape, ray, nearest_distance);
if (!bbox.intersect(ray, a, b))
return NULL;
/* pointers to the far child node and current node */
KdNode *farchild, *node;
node = root; /* start from the kd-tree root node */
/* std vector is much faster than stack */
vector<StackElem*> st;
StackElem *enPt = new StackElem(NULL, a,
/* distinguish between internal and external origin of a ray*/
a >= 0.0 ?
ray.o + ray.dir * a : /* external */
ray.o); /* internal */
/* setup initial exit point in the stack */
StackElem *exPt = new StackElem(NULL, b, ray.o + ray.dir * b);
st.push_back(exPt);
/* loop, traverse through the whole kd-tree, until an object is intersected or ray leaves the scene */
while (node)
{
exPt = st.back();
/* loop until a leaf is found */
while (!node->isLeaf())
{
/* retrieve position of splitting plane */
Float splitVal = node->getSplit();
short axis = node->getAxis();
if (enPt->pb[axis] <= splitVal)
{
if (exPt->pb[axis] <= splitVal)
{ /* case N1, N2, N3, P5, Z2, and Z3 */
node = node->getLeftChild();
continue;
}
if (exPt->pb[axis] == splitVal)
{ /* case Z1 */
node = node->getRightChild();
continue;
}
/* case N4 */
farchild = node->getRightChild();
node = node->getLeftChild();
}
else
{ /* (enPt->pb[axis] > splitVal) */
if (splitVal < exPt->pb[axis])
{
/* case P1, P2, P3, and N5 */
node = node->getRightChild();
continue;
}
/* case P4*/
farchild = node->getLeftChild();
node = node->getRightChild();
}
/* case P4 or N4 . . . traverse both children */
/* signed distance to the splitting plane */
t = (splitVal - ray.o.cell[axis]) / ray.dir.cell[axis];
/* setup the new exit point and push it onto stack */
exPt = new StackElem(farchild, t, Vector3());
exPt->pb.cell[axis] = splitVal;
exPt->pb.cell[(axis+1)%3] = ray.o.cell[(axis+1)%3] + t * ray.dir.cell[(axis+1)%3];
exPt->pb.cell[(axis+2)%3] = ray.o.cell[(axis+2)%3] + t * ray.dir.cell[(axis+2)%3];
st.push_back(exPt);
} /* while */
/* current node is the leaf . . . empty or full */
/* "intersect ray with each object in the object list, discarding "
"those lying before stack[enPt].t or farther than stack[exPt].t" */
Shape *nearest_shape = NULL;
Float dist = exPt->t;
ShapeList::iterator shape;
for (shape = node->shapes->begin(); shape != node->shapes->end(); shape++)
if (*shape != origin_shape && (*shape)->intersect(ray, dist)
&& dist >= enPt->t)
{
nearest_shape = *shape;
nearest_distance = dist;
}
delete enPt;
if (nearest_shape)
{
while (!st.empty())
{
delete st.back();
st.pop_back();
}
return nearest_shape;
}
enPt = exPt;
/* retrieve the pointer to the next node, it is possible that ray traversal terminates */
node = enPt->node;
st.pop_back();
} /* while */
delete enPt;
/* ray leaves the scene */
return NULL;
}
// this should save whole kd-tree with triangles distributed into leaves
void KdTree::save(ostream &str, KdNode *node)
{
if (!built)
return;
if (node == NULL)
node = root;
if (node->isLeaf())
str << "(leaf: " << node->shapes->size() << " shapes)";
else
{
str << "(split " << (char)('x'+node->getAxis()) << " at " << node->getSplit() << "; L=";
save(str, node->getLeftChild());
str << "; R=";
save(str, node->getRightChild());
str << ";)";
}
}
// load kd-tree from file/stream
void KdTree::load(istream &str, KdNode *node)
{
}