add MSVC compiler support, make it default for Windows
new header file simd.h for SSE abstraction and helpers
add mselect pseudo instruction for common or(and(...), andnot(...))
replace many SSE intrinsics with new names
new MemoryPool class (mempool.h) for faster KdNode allocation
remove setMaxDepth() from Octree and KdTree, make max_depth const,
it should be defined in constructor and never changed, change after
building tree would cause error in traversal
modify DefaultSampler to generate nice 2x2 packets of samples for packet tracing
optimize Box and BBox::intersect_packet
add precomputed invdir attribute to RayPacket
scons build system:
check for pthread library on Windows
check for SDL
generate include/config.h with variables detected by scons configuration
move auxiliary files to build/
add sanity checks
add writable operator[] to Vector
/*
* kdtree.cc: KdTree class
*
* This file is part of Pyrit Ray Tracer.
*
* Copyright 2006, 2007, 2008 Radek Brich
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <algorithm>
#include <stack>
#include <string>
#include <sstream>
#include "kdtree.h"
#include "serialize.h"
class ShapeBound
{
public:
Shape *shape;
Float pos;
bool end;
ShapeBound(Shape *ashape, const Float apos, const bool aend):
shape(ashape), pos(apos), end(aend) {};
friend bool operator<(const ShapeBound& a, const ShapeBound& b)
{
if (a.pos == b.pos)
return a.shape < b.shape;
else
return a.pos < b.pos;
};
};
// stack element for kd-tree traversal
struct StackElem
{
KdNode* node; /* pointer to far child */
Float t; /* the entry/exit signed distance */
Vector pb; /* the coordinates of entry/exit point */
int prev;
};
// ----------------------------------------
KdNode::~KdNode()
{
if (isLeaf())
delete getShapes();
}
// kd-tree recursive build algorithm, inspired by PBRT (www.pbrt.org)
void KdTree::recursive_build(KdNode *node, const BBox &bounds, int maxdepth)
{
ShapeList *shapes = node->getShapes();
if (maxdepth <= 0 || shapes->size() <= 2)
{
node->setLeaf();
return;
}
// choose split axis
/*axis = 0;
if (bounds.h() > bounds.w() && bounds.h() > bounds.d())
axis = 1;
if (bounds.d() > bounds.w() && bounds.d() > bounds.h())
axis = 2;
*/
// create sorted list of shape bounds (= find all posible splits)
vector<ShapeBound> edges[3];
ShapeList::iterator shape;
for (shape = shapes->begin(); shape != shapes->end(); shape++)
{
BBox shapebounds = (*shape)->get_bbox();
for (int ax = 0; ax < 3; ax++)
{
edges[ax].push_back(ShapeBound(*shape, shapebounds.L[ax], 0));
edges[ax].push_back(ShapeBound(*shape, shapebounds.H[ax], 1));
}
}
for (int ax = 0; ax < 3; ax++)
sort(edges[ax].begin(), edges[ax].end());
// choose best split pos
const Float K = 1.4f; // constant, K = cost of traversal / cost of ray-triangle intersection
Float SAV = (bounds.w()*bounds.h() + // surface area of node
bounds.w()*bounds.d() + bounds.h()*bounds.d());
Float cost = SAV * (K + shapes->size()); // initial cost = non-split cost
vector<ShapeBound>::iterator edge, splitedge = edges[0].end();
int axis = 0;
for (int ax = 0; ax < 3; ax++)
{
int lnum = 0, rnum = shapes->size();
BBox lbb = bounds;
BBox rbb = bounds;
for (edge = edges[ax].begin(); edge != edges[ax].end(); edge++)
{
if (edge->end)
rnum--;
// calculate SAH cost of this split
lbb.H[ax] = edge->pos;
rbb.L[ax] = edge->pos;
Float SAL = (lbb.w()*lbb.h() + lbb.w()*lbb.d() + lbb.h()*lbb.d());
Float SAR = (rbb.w()*rbb.h() + rbb.w()*rbb.d() + rbb.h()*rbb.d());
Float splitcost = K*SAV + SAL*(K + lnum) + SAR*(K + rnum);
if (splitcost < cost)
{
axis = ax;
splitedge = edge;
cost = splitcost;
}
if (!edge->end)
lnum++;
}
}
// we actually need to compare with edges[0].end(), but
// MSVC does not allow comparison of iterators from differen instances of vector
// it's OK this way, because axis will be zero if no good split was found
if (splitedge == edges[axis].end())
{
node->setLeaf();
return;
}
node->setSplit(splitedge->pos);
#if 0
// export kd-tree as .obj for visualization
// this would be hard to reconstruct later
static ofstream F("kdtree.obj");
Vector v;
static int f=0;
v[axis] = node->getSplit();
v[(axis+1)%3] = bounds.L[(axis+1)%3];
v[(axis+2)%3] = bounds.L[(axis+2)%3];
F << "v " << v.x << " " << v.y << " " << v.z << endl;
v[(axis+1)%3] = bounds.L[(axis+1)%3];
v[(axis+2)%3] = bounds.H[(axis+2)%3];
F << "v " << v.x << " " << v.y << " " << v.z << endl;
v[(axis+1)%3] = bounds.H[(axis+1)%3];
v[(axis+2)%3] = bounds.H[(axis+2)%3];
F << "v " << v.x << " " << v.y << " " << v.z << endl;
v[(axis+1)%3] = bounds.H[(axis+1)%3];
v[(axis+2)%3] = bounds.L[(axis+2)%3];
F << "v " << v.x << " " << v.y << " " << v.z << endl;
F << "f " << f+1 << " " << f+2 << " " << f+3 << " " << f+4 << endl;
f += 4;
#endif
// split this node
delete shapes;
BBox lbb = bounds;
BBox rbb = bounds;
lbb.H[axis] = node->getSplit();
rbb.L[axis] = node->getSplit();
node->setChildren(new (mempool.alloc()) KdNode);
new (mempool.alloc()) KdNode;
node->setAxis(axis);
for (edge = edges[axis].begin(); edge != splitedge; edge++)
if (!edge->end && edge->shape->intersect_bbox(lbb))
node->getLeftChild()->addShape(edge->shape);
for (edge = splitedge; edge < edges[axis].end(); edge++)
if (edge->end && edge->shape->intersect_bbox(rbb))
node->getRightChild()->addShape(edge->shape);
recursive_build(node->getLeftChild(), lbb, maxdepth-1);
recursive_build(node->getRightChild(), rbb, maxdepth-1);
}
void KdTree::build()
{
dbgmsg(1, "* building kd-tree\n");
root = new KdNode();
ShapeList::iterator shape;
for (shape = shapes.begin(); shape != shapes.end(); shape++)
root->addShape(*shape);
recursive_build(root, bbox, max_depth);
built = true;
}
/* algorithm by Vlastimil Havran, Heuristic Ray Shooting Algorithms, appendix C */
Shape *KdTree::nearest_intersection(const Shape *origin_shape, const Ray &ray,
Float &nearest_distance)
{
Float a, b; /* entry/exit signed distance */
Float t; /* signed distance to the splitting plane */
/* if we have no tree, fall back to naive test */
if (!built)
return Container::nearest_intersection(origin_shape, ray, nearest_distance);
if (!bbox.intersect(ray, a, b))
return NULL;
/* pointers to the far child node and current node */
KdNode *farchild, *node;
node = root;
#ifdef MSVC
// MSVC wants constant expression here... hope it won't overflow :)
StackElem stack[64];
#else
StackElem stack[max_depth];
#endif
int entry = 0, exit = 1;
stack[entry].t = a;
/* distinguish between internal and external origin of a ray*/
if (a >= 0.0)
stack[entry].pb = ray.o + ray.dir * a; /* external */
else
stack[entry].pb = ray.o; /* internal */
/* setup initial exit point in the stack */
stack[exit].t = b;
stack[exit].pb = ray.o + ray.dir * b;
stack[exit].node = NULL;
/* loop, traverse through the whole kd-tree, until an object is intersected or ray leaves the scene */
Float splitVal;
int axis;
static const int mod3[] = {0,1,2,0,1};
const Vector invdir = 1 / ray.dir;
while (node)
{
/* loop until a leaf is found */
while (!node->isLeaf())
{
/* retrieve position of splitting plane */
splitVal = node->getSplit();
axis = node->getAxis();
if (stack[entry].pb[axis] <= splitVal)
{
if (stack[exit].pb[axis] <= splitVal)
{ /* case N1, N2, N3, P5, Z2, and Z3 */
node = node->getLeftChild();
continue;
}
if (stack[entry].pb[axis] == splitVal)
{ /* case Z1 */
node = node->getRightChild();
continue;
}
/* case N4 */
farchild = node->getRightChild();
node = node->getLeftChild();
}
else
{ /* (stack[entry].pb[axis] > splitVal) */
if (stack[exit].pb[axis] > splitVal)
{
/* case P1, P2, P3, and N5 */
node = node->getRightChild();
continue;
}
/* case P4 */
farchild = node->getLeftChild();
node = node->getRightChild();
}
/* case P4 or N4 . . . traverse both children */
/* signed distance to the splitting plane */
t = (splitVal - ray.o[axis]) * invdir[axis];
/* setup the new exit point and push it onto stack */
register int tmp = exit;
exit++;
if (exit == entry)
exit++;
assert(exit < max_depth);
stack[exit].prev = tmp;
stack[exit].t = t;
stack[exit].node = farchild;
stack[exit].pb[axis] = splitVal;
stack[exit].pb[mod3[axis+1]] = ray.o[mod3[axis+1]]
+ t * ray.dir[mod3[axis+1]];
stack[exit].pb[mod3[axis+2]] = ray.o[mod3[axis+2]]
+ t * ray.dir[mod3[axis+2]];
}
/* current node is the leaf . . . empty or full */
Shape *nearest_shape = NULL;
Float dist = stack[exit].t;
ShapeList::iterator shape;
for (shape = node->getShapes()->begin(); shape != node->getShapes()->end(); shape++)
if (*shape != origin_shape && (*shape)->intersect(ray, dist)
&& dist >= stack[entry].t - Eps)
{
nearest_shape = *shape;
nearest_distance = dist;
}
if (nearest_shape)
return nearest_shape;
entry = exit;
/* retrieve the pointer to the next node,
it is possible that ray traversal terminates */
node = stack[entry].node;
exit = stack[entry].prev;
}
/* ray leaves the scene */
return NULL;
}
#ifndef NO_SIMD
// stack element for kd-tree traversal (packet version)
struct StackElem4
{
KdNode* node; /* pointer to far child */
mfloat4 t; /* the entry/exit signed distance */
VectorPacket pb; /* the coordinates of entry/exit point */
int prev;
};
void KdTree::packet_intersection(const Shape* const* origin_shapes, const RayPacket &rays,
Float *nearest_distances, Shape **nearest_shapes)
{
mfloat4 a, b; /* entry/exit signed distance */
mfloat4 t; /* signed distance to the splitting plane */
mfloat4 mask = mZero;
/* if we have no tree, fall back to naive test */
if (!built)
Container::packet_intersection(origin_shapes, rays, nearest_distances, nearest_shapes);
// nearest_shapes[0..4] = NULL
memset(nearest_shapes, 0, 4*sizeof(Shape*));
mask = bbox.intersect_packet(rays, a, b);
if (!mmovemask(mask))
return;
/* pointers to the far child node and current node */
KdNode *farchild, *node;
node = root;
#ifdef MSVC
// MSVC wants constant expression here... hope it won't overflow :)
StackElem4 stack[64];
#else
StackElem4 stack[max_depth];
#endif
int entry = 0, exit = 1;
stack[entry].t = a;
/* distinguish between internal and external origin of a ray*/
t = mcmplt(a, mZero);
stack[entry].pb = rays.o + rays.dir * a;
stack[entry].pb.mx = mselect(t, rays.o.mx, stack[entry].pb.mx);
stack[entry].pb.my = mselect(t, rays.o.my, stack[entry].pb.my);
stack[entry].pb.mz = mselect(t, rays.o.mz, stack[entry].pb.mz);
/* setup initial exit point in the stack */
stack[exit].t = b;
stack[exit].pb = rays.o + rays.dir * b;
stack[exit].node = NULL;
/* loop, traverse through the whole kd-tree,
until an object is intersected or ray leaves the scene */
mfloat4 splitVal;
int axis;
static const int mod3[] = {0,1,2,0,1};
const VectorPacket invdirs = mOne / rays.dir;
while (node)
{
/* loop until a leaf is found */
while (!node->isLeaf())
{
/* retrieve position of splitting plane */
splitVal = mset1(node->getSplit());
axis = node->getAxis();
// mask out invalid rays with near > far
const mfloat4 curmask = mand(mask, mcmple(stack[entry].t, stack[exit].t));
const mfloat4 entry_lt = mcmplt(stack[entry].pb.ma[axis], splitVal);
const mfloat4 entry_gt = mcmpgt(stack[entry].pb.ma[axis], splitVal);
const mfloat4 exit_lt = mcmplt(stack[exit].pb.ma[axis], splitVal);
const mfloat4 exit_gt = mcmpgt(stack[exit].pb.ma[axis], splitVal);
// if all of
// stack[entry].pb[axis] <= splitVal,
// stack[exit].pb[axis] <= splitVal
if (!mmovemask(
mand(mor(entry_gt, exit_gt), curmask)))
{
node = node->getLeftChild();
continue;
}
// if all of
// stack[entry].pb[axis] >= splitVal,
// stack[exit].pb[axis] >= splitVal
if (!mmovemask(
mand(mor(entry_lt, exit_lt), curmask)))
{
node = node->getRightChild();
continue;
}
// any of
// stack[entry].pb[axis] < splitVal,
// stack[exit].pb[axis] > splitVal
int cond1 = mmovemask(
mand(mand(entry_lt, exit_gt), curmask));
// any of
// stack[entry].pb[axis] > splitVal,
// stack[exit].pb[axis] < splitVal
int cond2 = mmovemask(
mand(mand(entry_gt, exit_lt), curmask));
if ((!cond1 && !cond2) || (cond1 && cond2))
{
// fall back to single rays
// FIXME: split rays and continue
for (int i = 0; i < 4; i++)
if (!nearest_shapes[i])
nearest_shapes[i] = nearest_intersection(origin_shapes[i],
rays[i], nearest_distances[i]);
return;
}
if (cond1)
{
farchild = node->getRightChild();
node = node->getLeftChild();
}
else
{
farchild = node->getLeftChild();
node = node->getRightChild();
}
/* traverse both children */
/* signed distance to the splitting plane */
t = mmul(msub(splitVal, rays.o.ma[axis]), invdirs.ma[axis]);
/* setup the new exit point and push it onto stack */
register int tmp = exit;
exit++;
if (exit == entry)
exit++;
assert(exit < max_depth);
stack[exit].prev = tmp;
stack[exit].t = t;
stack[exit].node = farchild;
stack[exit].pb.ma[axis] = splitVal;
stack[exit].pb.ma[mod3[axis+1]] =
madd(rays.o.ma[mod3[axis+1]], mmul(t, rays.dir.ma[mod3[axis+1]]));
stack[exit].pb.ma[mod3[axis+2]] =
madd(rays.o.ma[mod3[axis+2]], mmul(t, rays.dir.ma[mod3[axis+2]]));
}
/* current node is the leaf . . . empty or full */
mfloat4 dists = stack[exit].t;
ShapeList::iterator shape;
mfloat4 results;
mfloat4 newmask = mask;
for (shape = node->getShapes()->begin(); shape != node->getShapes()->end(); shape++)
{
results = (*shape)->intersect_packet(rays, dists);
int valid = mmovemask(
mand(mask, mand(results,
mcmpge(dists, msub(stack[entry].t, mEps)))));
for (int i = 0; i < 4; i++)
{
if (*shape != origin_shapes[i] && ((valid>>i)&1))
{
nearest_shapes[i] = *shape;
nearest_distances[i] = ((float*)&dists)[i];
((int*)&newmask)[i] = 0;
}
}
}
mask = newmask;
if (!mmovemask(mask))
return;
entry = exit;
/* retrieve the pointer to the next node,
it is possible that ray traversal terminates */
node = stack[entry].node;
exit = stack[entry].prev;
}
/* ray leaves the scene */
}
#endif
ostream & operator<<(ostream &st, KdNode &node)
{
if (node.isLeaf())
{
st << "(l," << node.getShapes()->size();
ShapeList::iterator shape;
for (shape = node.getShapes()->begin(); shape != node.getShapes()->end(); shape++)
st << "," << shape_index[*shape];
st << ")";
}
else
{
st << "(s," << (char)('x'+node.getAxis()) << "," << node.getSplit() << ",";
st << *node.getLeftChild() << ",";
st << *node.getRightChild() << ")";
}
return st;
}
ostream & KdTree::dump(ostream &st)
{
if (!built)
return Container::dump(st);
st << "(kdtree," << shapes.size();
ShapeList::iterator shape;
for (shape = shapes.begin(); shape != shapes.end(); shape++)
{
int idx;
if (!shape_index.get(*shape, idx))
st << "," << endl << **shape;
}
return st << "," << endl << *getRootNode() << ")";
}
void KdTree::recursive_load(istream &st, KdNode *node)
{
string s;
istringstream is;
getline(st, s, ',');
trim(s);
if (s.compare("(s") == 0)
{
// split
int axis;
Float split;
delete node->getShapes();
node->setChildren(new KdNode[2]);
getline(st, s, ',');
axis = s.c_str()[0]-'x';
node->setAxis(axis);
st >> split;
getline(st, s, ',');
node->setSplit(split);
recursive_load(st, node->getLeftChild());
getline(st, s, ',');
recursive_load(st, node->getRightChild());
getline(st, s, ')');
}
if (s.compare("(l") == 0)
{
// leaf
int count, idx;
node->setLeaf();
st >> count;
for (int i = 0; i < count; i++)
{
getline(st, s, ',');
st >> idx;
node->addShape(shapes[idx]);
}
getline(st, s, ')');
}
}
istream & KdTree::load(istream &st, Material *mat)
{
string s;
istringstream is;
getline(st, s, ',');
if (s.compare("(kdtree") != 0)
return st;
dbgmsg(1, "* loading kd-tree\n");
shapes.clear();
if (root) delete root;
root = new KdNode();
getline(st, s, ',');
int shape_count;
is.str(s);
is >> shape_count;
Shape *shape;
for (int i = 0; i < shape_count; i++)
{
shape = loadShape(st, mat);
Container::addShape(shape);
getline(st, s, ',');
}
recursive_load(st, root);
built = true;
return st;
}