add MSVC compiler support, make it default for Windows
new header file simd.h for SSE abstraction and helpers
add mselect pseudo instruction for common or(and(...), andnot(...))
replace many SSE intrinsics with new names
new MemoryPool class (mempool.h) for faster KdNode allocation
remove setMaxDepth() from Octree and KdTree, make max_depth const,
it should be defined in constructor and never changed, change after
building tree would cause error in traversal
modify DefaultSampler to generate nice 2x2 packets of samples for packet tracing
optimize Box and BBox::intersect_packet
add precomputed invdir attribute to RayPacket
scons build system:
check for pthread library on Windows
check for SDL
generate include/config.h with variables detected by scons configuration
move auxiliary files to build/
add sanity checks
add writable operator[] to Vector
/*
* shapes.cc: shape classes
*
* This file is part of Pyrit Ray Tracer.
*
* Copyright 2006, 2007, 2008 Radek Brich
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shapes.h"
#include "serialize.h"
bool Sphere::intersect(const Ray &ray, Float &dist) const
{
Vector V = ray.o - center;
register Float d = -dot(V, ray.dir);
register Float Det = d * d - (dot(V,V) - sqr_radius);
register Float t1,t2;
if (Det > 0) {
Det = sqrtf(Det);
t1 = d - Det;
t2 = d + Det;
if (t1 > 0)
{
if (t1 < dist)
{
dist = t1;
return true;
}
}
else if (t2 > 0 && t2 < dist)
{
dist = t2;
return true;
}
}
return false;
}
#ifndef NO_SIMD
mfloat4 Sphere::intersect_packet(const RayPacket &rays, mfloat4 &dists) const
{
VectorPacket V = rays.o - VectorPacket(center);
register mfloat4 d = msub(mZero, dot(V, rays.dir));
register mfloat4 Det = msub(mmul(d, d), msub(dot(V,V), mset1(sqr_radius)));
register mfloat4 t1, t2, mask;
mask = mcmpgt(Det, mZero);
if (!mmovemask(mask))
return mask;
Det = msqrt(Det);
t1 = msub(d, Det);
t2 = madd(d, Det);
mask = mand(mask, mcmpgt(t2, mZero));
const mfloat4 cond1 = mand(mcmpgt(t1, mZero), mcmplt(t1, dists));
const mfloat4 cond2 = mand(mcmple(t1, mZero), mcmplt(t2, dists));
const mfloat4 newdists = mor(mand(cond1, t1), mand(cond2, t2));
mask = mand(mask, mor(cond1, cond2));
dists = mselect(mask, newdists, dists);
return mask;
}
#endif
/* if there should be CSG sometimes, this may be needed... */
bool Sphere::intersect_all(const Ray &ray, Float dist, vector<Float> &allts) const
{
//allts = new vector<Float>();
Vector V = ((Ray)ray).o - center;
Float Vd = - dot(V, ray.dir);
Float Det = Vd * Vd - (dot(V,V) - sqr_radius);
if (Det > 0) {
Det = sqrtf(Det);
Float t1 = Vd - Det;
Float t2 = Vd + Det;
if (t1 < 0)
{
if (t2 > 0)
{
// ray from inside of the sphere
allts.push_back(0.0);
allts.push_back(t2);
return true;
}
else
return false;
}
else
{
allts.push_back(t1);
allts.push_back(t2);
return true;
}
}
return false;
}
bool Sphere::intersect_bbox(const BBox &bbox) const
{
register float dmin = 0;
for (int i = 0; i < 3; i++)
{
if (center[i] < bbox.L[i])
dmin += (center[i] - bbox.L[i])*(center[i] - bbox.L[i]);
else
if (center[i] > bbox.H[i])
dmin += (center[i] - bbox.H[i])*(center[i] - bbox.H[i]);
}
if (dmin <= sqr_radius)
return true;
return false;
};
BBox Sphere::get_bbox() const
{
return BBox(center - radius, center + radius);
}
bool Box::intersect(const Ray &ray, Float &dist) const
{
register Float tnear = -Inf;
register Float tfar = Inf;
register Float t1, t2;
for (int i = 0; i < 3; i++)
{
if (ray.dir[i] == 0) {
/* ray is parallel to these planes */
if (ray.o[i] < L[i] || ray.o[i] > H[i])
return false;
}
else
{
/* compute the intersection distance of the planes */
t1 = (L[i] - ray.o[i]) / ray.dir[i];
t2 = (H[i] - ray.o[i]) / ray.dir[i];
if (t1 > t2)
swap(t1, t2);
if (t1 > tnear)
tnear = t1; /* want largest Tnear */
if (t2 < tfar)
tfar = t2; /* want smallest Tfar */
if (tnear > tfar || tfar < 0)
return false; /* box missed; box is behind ray */
}
}
if (tnear < dist)
{
dist = tnear;
return true;
}
return false;
}
#ifndef NO_SIMD
mfloat4 Box::intersect_packet(const RayPacket &rays, mfloat4 &dists) const
{
mfloat4 origin = rays.o.ma[0];
mfloat4 invdir = rays.invdir.ma[0];
mfloat4 t1 = mmul(msub(mset1(L[0]), origin), invdir);
mfloat4 t2 = mmul(msub(mset1(H[0]), origin), invdir);
mfloat4 tmin = mmin(t1, t2);
mfloat4 tmax = mmax(t1, t2);
origin = rays.o.ma[1];
invdir = rays.invdir.ma[1];
t1 = mmul(msub(mset1(L[1]), origin), invdir);
t2 = mmul(msub(mset1(H[1]), origin), invdir);
tmin = mmax(mmin(t1, t2), tmin);
tmax = mmin(mmax(t1, t2), tmax);
origin = rays.o.ma[2];
invdir = rays.invdir.ma[2];
t1 = mmul(msub(mset1(L[2]), origin), invdir);
t2 = mmul(msub(mset1(H[2]), origin), invdir);
tmin = mmax(mmin(t1, t2), tmin);
tmax = mmin(mmax(t1, t2), tmax);
mfloat4 mask = mand(mand(mcmplt(tmin, tmax), mcmpgt(tmax, mZero)), mcmplt(tmin, dists));
dists = mselect(mask, tmin, dists);
return mask;
}
#endif
bool Box::intersect_bbox(const BBox &bbox) const
{
return (
H.x > bbox.L.x && L.x < bbox.H.x &&
H.y > bbox.L.y && L.y < bbox.H.y &&
H.z > bbox.L.z && L.z < bbox.H.z);
}
const Vector Box::normal(const Vector &P) const
{
register Vector l = P - L;
register Vector h = H - P;
if (l.x < h.x)
h.x = -1;
else
{
l.x = h.x;
h.x = +1;
}
if (l.y < h.y)
h.y = -1;
else
{
l.y = h.y;
h.y = +1;
}
if (l.z < h.z)
h.z = -1;
else
{
l.z = h.z;
h.z = +1;
}
if (l.x > l.y)
{
h.x = 0;
if (l.y > l.z)
h.y = 0;
else
h.z = 0;
}
else
{
h.y = 0;
if (l.x > l.z)
h.x = 0;
else
h.z = 0;
}
return h;
}
#ifdef TRI_PLUCKER
inline void Plucker(const Vector &p, const Vector &q, Float* pl)
{
pl[0] = p.x*q.y - q.x*p.y;
pl[1] = p.x*q.z - q.x*p.z;
pl[2] = p.x - q.x;
pl[3] = p.y*q.z - q.y*p.z;
pl[4] = p.z - q.z;
pl[5] = q.y - p.y;
}
inline Float Side(const Float* pla, const Float* plb)
{
return pla[0]*plb[4] + pla[1]*plb[5] + pla[2]*plb[3] + pla[4]*plb[0] + pla[5]*plb[1] + pla[3]*plb[2];
}
#endif
Triangle::Triangle(Vertex *aA, Vertex *aB, Vertex *aC, Material *amaterial)
: A(aA), B(aB), C(aC)
{
material = amaterial;
const Vector c = B->P - A->P;
const Vector b = C->P - A->P;
N = cross(c, b);
N.normalize();
#ifdef TRI_PLUCKER
Plucker(B->P,C->P,pla);
Plucker(C->P,A->P,plb);
Plucker(A->P,B->P,plc);
#endif
#if defined(TRI_BARI) || defined(TRI_BARI_PRE)
if (fabsf(N.x) > fabsf(N.y))
{
if (fabsf(N.x) > fabsf(N.z))
k = 0;
else
k = 2;
}
else
{
if (fabsf(N.y) > fabsf(N.z))
k = 1;
else
k = 2;
}
#endif
#ifdef TRI_BARI_PRE
int u = (k + 1) % 3;
int v = (k + 2) % 3;
Float krec = 1.0 / N[k];
nu = N[u] * krec;
nv = N[v] * krec;
nd = dot(N, A->P) * krec;
// first line equation
Float reci = 1.0f / (b[u] * c[v] - b[v] * c[u]);
bnu = b[u] * reci;
bnv = -b[v] * reci;
// second line equation
cnu = -c[u] * reci;
cnv = c[v] * reci;
#endif
}
bool Triangle::intersect(const Ray &ray, Float &dist) const
{
#ifdef TRI_PLUCKER
Float plr[6];
Plucker(ray.o, ray.o+ray.dir, plr);
const bool side0 = Side(plr, pla) >= 0.0;
const bool side1 = Side(plr, plb) >= 0.0;
if (side0 != side1)
return false;
const bool side2 = Side(plr, plc) >= 0.0;
if (side0 != side2)
return false;
const Float t = - dot( (ray.o - A->P), N) / dot(ray.dir,N);
if(t <= Eps || t >= dist)
return false;
dist = t;
return true;
#endif
#if defined(TRI_BARI) || defined(TRI_BARI_PRE)
static const int modulo3[5] = {0,1,2,0,1};
const Vector &O = ray.o;
const Vector &D = ray.dir;
register const int u = modulo3[k+1];
register const int v = modulo3[k+2];
#endif
#ifdef TRI_BARI_PRE
const Float t = (nd - O[k] - nu * O[u] - nv * O[v]) / (D[k] + nu * D[u] + nv * D[v]);
if (t >= dist || t < Eps)
return false;
const Float hu = O[u] + t * D[u] - A->P[u];
const Float hv = O[v] + t * D[v] - A->P[v];
const Float beta = hv * bnu + hu * bnv;
if (beta < 0.)
return false;
const Float gamma = hu * cnv + hv * cnu;
if (gamma < 0. || beta + gamma > 1.)
return false;
dist = t;
return true;
#endif
#ifdef TRI_BARI
// original barycentric coordinates based intesection
// not optimized, just for reference
const Vector c = B - A;
const Vector b = C - A;
// distance test
const Float t = - dot( (O-A), N) / dot(D,N);
if (t < Eps || t > dist)
return false;
// calc hitpoint
const Float Hu = O[u] + t * D[u] - A[u];
const Float Hv = O[v] + t * D[v] - A[v];
const Float beta = (b[u] * Hv - b[v] * Hu) / (b[u] * c[v] - b[v] * c[u]);
if (beta < 0)
return false;
const Float gamma = (c[v] * Hu - c[u] * Hv) / (b[u] * c[v] - b[v] * c[u]);
if (gamma < 0)
return false;
if (beta+gamma > 1)
return false;
dist = t;
return true;
#endif
}
#if !defined(NO_SIMD) && defined(TRI_BARI_PRE)
mfloat4 Triangle::intersect_packet(const RayPacket &rays, mfloat4 &dists) const
{
static const int modulo3[5] = {0,1,2,0,1};
register const int u = modulo3[k+1];
register const int v = modulo3[k+2];
mfloat4 mask;
const mfloat4 t = mdiv(
msub(msub(
msub(mset1(nd), rays.o.ma[k]),
mmul(mset1(nu), rays.o.ma[u])
), mmul(mset1(nv), rays.o.ma[v])),
madd(rays.dir.ma[k],
madd(mmul(mset1(nu), rays.dir.ma[u]),
mmul(mset1(nv), rays.dir.ma[v])))
);
mask = mand(mcmplt(t, dists), mcmpge(t, mEps));
if (!mmovemask(mask))
return mask;
const mfloat4 hu = msub(madd(rays.o.ma[u],
mmul(t, rays.dir.ma[u])), mset1(A->P[u]));
const mfloat4 hv = msub(madd(rays.o.ma[v],
mmul(t, rays.dir.ma[v])), mset1(A->P[v]));
const mfloat4 beta = madd(mmul(hv, mset1(bnu)),
mmul(hu, mset1(bnv)));
mask = mand(mask, mcmpge(beta, mZero));
if (!mmovemask(mask))
return mask;
const mfloat4 gamma = madd(mmul(hu, mset1(cnv)),
mmul(hv, mset1(cnu)));
mask = mand(mask, mand(mcmpge(gamma, mZero),
mcmple(madd(beta, gamma), mOne)));
if (!mmovemask(mask))
return mask;
dists = mselect(mask, t, dists);
return mask;
}
#endif
bool Triangle::intersect_bbox(const BBox &bbox) const
{
const Vector boxcenter = (bbox.L+bbox.H)*0.5;
const Vector boxhalfsize = (bbox.H-bbox.L)*0.5;
const Vector v0 = A->P - boxcenter;
const Vector v1 = B->P - boxcenter;
const Vector v2 = C->P - boxcenter;
const Vector e0 = v1-v0;
const Vector e1 = v2-v1;
const Vector e2 = v0-v2;
Float fex = fabsf(e0.x);
Float fey = fabsf(e0.y);
Float fez = fabsf(e0.z);
Float p0,p1,p2,min,max,rad;
p0 = e0.z*v0.y - e0.y*v0.z;
p2 = e0.z*v2.y - e0.y*v2.z;
if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;}
rad = fez * boxhalfsize.y + fey * boxhalfsize.z;
if(min>rad || max<-rad) return false;
p0 = -e0.z*v0.x + e0.x*v0.z;
p2 = -e0.z*v2.x + e0.x*v2.z;
if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;}
rad = fez * boxhalfsize.x + fex * boxhalfsize.z;
if(min>rad || max<-rad) return false;
p1 = e0.y*v1.x - e0.x*v1.y;
p2 = e0.y*v2.x - e0.x*v2.y;
if(p2<p1) {min=p2; max=p1;} else {min=p1; max=p2;}
rad = fey * boxhalfsize.x + fex * boxhalfsize.y;
if(min>rad || max<-rad) return false;
fex = fabsf(e1.x);
fey = fabsf(e1.y);
fez = fabsf(e1.z);
p0 = e1.z*v0.y - e1.y*v0.z;
p2 = e1.z*v2.y - e1.y*v2.z;
if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;}
rad = fez * boxhalfsize.y + fey * boxhalfsize.z;
if(min>rad || max<-rad) return false;
p0 = -e1.z*v0.x + e1.x*v0.z;
p2 = -e1.z*v2.x + e1.x*v2.z;
if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;}
rad = fez * boxhalfsize.x + fex * boxhalfsize.z;
if(min>rad || max<-rad) return false;
p0 = e1.y*v0.x - e1.x*v0.y;
p1 = e1.y*v1.x - e1.x*v1.y;
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;}
rad = fey * boxhalfsize.x + fex * boxhalfsize.y;
if(min>rad || max<-rad) return false;
fex = fabsf(e2.x);
fey = fabsf(e2.y);
fez = fabsf(e2.z);
p0 = e2.z*v0.y - e2.y*v0.z;
p1 = e2.z*v1.y - e2.y*v1.z;
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;}
rad = fez * boxhalfsize.y + fey * boxhalfsize.z;
if(min>rad || max<-rad) return false;
p0 = -e2.z*v0.x + e2.x*v0.z;
p1 = -e2.z*v1.x + e2.x*v1.z;
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;}
rad = fez * boxhalfsize.x + fex * boxhalfsize.z;
if(min>rad || max<-rad) return false;
p1 = e2.y*v1.x - e2.x*v1.y;
p2 = e2.y*v2.x - e2.x*v2.y;
if(p2<p1) {min=p2; max=p1;} else {min=p1; max=p2;}
rad = fey * boxhalfsize.x + fex * boxhalfsize.y;
if(min>rad || max<-rad) return false;
/* test overlap in the {x,y,z}-directions */
/* test in X-direction */
min = v0.x;
if (v1.x < min) min = v1.x;
if (v2.x < min) min = v2.x;
max = v0.x;
if (v1.x > max) max = v1.x;
if (v2.x > max) max = v2.x;
if(min>boxhalfsize.x || max<-boxhalfsize.x) return false;
/* test in Y-direction */
min = v0.y;
if (v1.y < min) min = v1.y;
if (v2.y < min) min = v2.y;
max = v0.y;
if (v1.y > max) max = v1.y;
if (v2.y > max) max = v2.y;
if(min>boxhalfsize.y || max<-boxhalfsize.y) return false;
/* test in Z-direction */
min = v0.z;
if (v1.z < min) min = v1.z;
if (v2.z < min) min = v2.z;
max = v0.z;
if (v1.z > max) max = v1.z;
if (v2.z > max) max = v2.z;
if(min>boxhalfsize.z || max<-boxhalfsize.z) return false;
/* test if the box intersects the plane of the triangle */
Vector vmin,vmax;
Float v;
for(int q=0;q<3;q++)
{
v=v0[q];
if(N[q]>0.0f)
{
vmin[q]=-boxhalfsize[q] - v;
vmax[q]= boxhalfsize[q] - v;
}
else
{
vmin[q]= boxhalfsize[q] - v;
vmax[q]=-boxhalfsize[q] - v;
}
}
if(dot(N,vmin)>0.0f) return false;
if(dot(N,vmax)>=0.0f) return true;
return false;
}
BBox Triangle::get_bbox() const
{
BBox bbox = BBox();
bbox.L = A->P;
if (B->P.x < bbox.L.x) bbox.L.x = B->P.x;
if (C->P.x < bbox.L.x) bbox.L.x = C->P.x;
if (B->P.y < bbox.L.y) bbox.L.y = B->P.y;
if (C->P.y < bbox.L.y) bbox.L.y = C->P.y;
if (B->P.z < bbox.L.z) bbox.L.z = B->P.z;
if (C->P.z < bbox.L.z) bbox.L.z = C->P.z;
bbox.H = A->P;
if (B->P.x > bbox.H.x) bbox.H.x = B->P.x;
if (C->P.x > bbox.H.x) bbox.H.x = C->P.x;
if (B->P.y > bbox.H.y) bbox.H.y = B->P.y;
if (C->P.y > bbox.H.y) bbox.H.y = C->P.y;
if (B->P.z > bbox.H.z) bbox.H.z = B->P.z;
if (C->P.z > bbox.H.z) bbox.H.z = C->P.z;
return bbox;
}
ostream & Sphere::dump(ostream &st) const
{
return st << "(sphere," << center << "," << radius << ")";
}
ostream & Box::dump(ostream &st) const
{
return st << "(box," << L << "," << H << ")";
}
ostream & Vertex::dump(ostream &st) const
{
return st << "(v," << P << ")";
}
ostream & NormalVertex::dump(ostream &st) const
{
return st << "(vn," << P << "," << N << ")";
}
ostream & Triangle::dump(ostream &st) const
{
int idxA, idxB, idxC;
if (!vertex_index.get(A, idxA))
st << *A << "," << endl;
if (!vertex_index.get(B, idxB))
st << *B << "," << endl;
if (!vertex_index.get(C, idxC))
st << *C << "," << endl;
return st << "(t," << idxA << "," << idxB << "," << idxC << ")";
}