tuned ray-triangle intersection, now there are three algorithms to choose from:
Plucker, Barycentric and Barycentric with preprocessing (Wald)
methods in Vector and Shape (and derivates) made const
#include "raytracer.h"
#include "image.h"
int main()
{
Raytracer rt;
rt.setThreads(2);
KdTree top;
rt.setTop(&top);
Light light1(Vector3(0.0, 5.0, -5.0), Colour(0.7, 0.3, 0.6));
rt.addlight(&light1);
Light light2(Vector3(-2.0, 10.0, -2.0), Colour(0.4, 0.6, 0.3));
rt.addlight(&light2);
Material mat0(Colour(0.7, 0.7, 0.7));
Box box(Vector3(-20.0, -1.2, -20.0), Vector3(20.0, -1.0, 20.0), &mat0);
rt.addshape(&box);
Material mat1(Colour(1.0, 0.0, 0.0));
Sphere bigsphere(Vector3(3.0, 2.0, -7.0), 3.0, &mat1);
rt.addshape(&bigsphere);
Material mat2(Colour(0.0, 1.0, 0.0));
Sphere smallsphere(Vector3(-5.5, 1.5, -8.0), 2.0, &mat2);
rt.addshape(&smallsphere);
Material mat3(Colour(0.0, 0.0, 1.0));
Sphere tinysphere(Vector3(-1.2, 0.0, -2.0), 0.5, &mat3);
rt.addshape(&tinysphere);
top.optimize();
Camera cam;
cam.setEye(Vector3(0,0,15));
rt.setCamera(&cam);
int w = 800;
int h = 600;
Float *fdata = (Float *) malloc(w*h*3*sizeof(Float));
rt.render(w, h, fdata);
struct image *img;
new_image(&img, w, h, 3);
Float *fd = fdata;
for (char *cd = img->data; cd != img->data + w*h*3; cd++, fd++) {
if (*fd > 1.0)
*cd = 255;
else
*cd = (unsigned char)(*fd * 255.0);
}
free(fdata);
save_png("spheres_shadow.png", img);
destroy_image(&img);
}