src/scene.cc
author Radek Brich <radek.brich@devl.cz>
Fri, 09 Nov 2007 10:17:27 +0100 (2007-11-09)
branchpyrit
changeset 2 ce23c7deb2d3
parent 0 3547b885df7e
child 7 bf17f9f84c91
permissions -rw-r--r--
added TODO
/*
 * C++ RayTracer
 * file: scene.cc
 *
 * Radek Brich, 2006
 */

#include <math.h>
#include "scene.h"

bool Sphere::intersect(const Ray &ray, float &dist)
{
	Vector3 V = ((Ray)ray).a - center;

	float Vd = - dot(V, ray.dir);
	float Det = Vd * Vd - (dot(V,V) - sqr_radius);

	if (Det > 0) {
		Det = sqrtf(Det);
		float t1 = Vd - Det;
		if (t1 > 0)
		{
			if (t1 < dist) {
				dist = t1;
				return true;
			}
		} else {
			float t2 = Vd + Det;
			if (t2 > 0)
			{
				// ray from inside of the sphere
				dist = t2;
				return true;
			}
		}
	}
	return false;
}

bool Sphere::intersect_all(const Ray &ray, float dist, vector<float> &allts)
{
	//allts = new vector<float>();

	Vector3 V = ((Ray)ray).a - center;
	float Vd = - dot(V, ray.dir);
	float Det = Vd * Vd - (dot(V,V) - sqr_radius);

	if (Det > 0) {
		Det = sqrtf(Det);
		float t1 = Vd - Det;
		float t2 = Vd + Det;
		if (t1 < 0)
		{
			if (t2 > 0)
			{
				// ray from inside of the sphere
				allts.push_back(0.0);
				allts.push_back(t2);
				return true;
			}
			else
				return false;
		}
		else
		{
			allts.push_back(t1);
			allts.push_back(t2);
			return true;
		}
	}
	return false;
}

bool Plane::intersect(const Ray &ray, float &dist)
{
	float dir = dot(N, ray.dir);
	if (dir != 0)
	{
		float newdist = -(dot(N, ray.a) + d) / dir;
		if (newdist > 0 && newdist < dist) {
			dist = newdist;
			return true;
		}
	}
	return false;
}

// this initialization and following intersection methods implements
// Fast Triangle Intersection algorithm from
// http://www.mpi-inf.mpg.de/~wald/PhD/
Triangle::Triangle(const Vector3 &aA, const Vector3 &aB, const Vector3 &aC, Material *amaterial)
	: A(aA), B(aB), C(aC)
{
	material = amaterial;
	Vector3 c = B - A;
	Vector3 b = C - A;

	N = cross(c, b);

	if (fabsf(N.x) > fabsf(N.y))
	{
		if (fabsf(N.x) > fabsf(N.z))
			k = 0;
		else
			k = 2;
	}
	else
	{
		if (fabsf(N.y) > fabsf(N.z))
			k = 1;
		else
			k = 2;
	}

	int u = (k + 1) % 3;
	int v = (k + 2) % 3;

	float krec = 1.0f / N[k];
	nu = N[u] * krec;
	nv = N[v] * krec;
	nd = dot(N, A) * krec;

	// first line equation
	float reci = 1.0f / (b[u] * c[v] - b[v] * c[u]);
	bnu = b[u] * reci;
	bnv = -b[v] * reci;

	// second line equation
	cnu = c[v] * reci;
	cnv = -c[u] * reci;

	// finalize normal
	N.normalize();
}

// see comment for previous method
bool Triangle::intersect(const Ray &ray, float &dist)
{
	Vector3 O = ray.a;
	Vector3 D = ray.dir;

	const int modulo3[5] = {0,1,2,0,1};
	const int ku = modulo3[k+1];
	const int kv = modulo3[k+2];
	const float lnd = 1.0f / (D[k] + nu * D[ku] + nv * D[kv]);
	const float t = (nd - O[k] - nu * O[ku] - nv * O[kv]) * lnd;

	if (!(t < dist && t > 0))
		return false;

	float hu = O[ku] + t * D[ku] - A[ku];
	float hv = O[kv] + t * D[kv] - A[kv];
	float beta = hv * bnu + hu * bnv;

	if (beta < 0)
		return false;

	float gamma = hu * cnu + hv * cnv;
	if (gamma < 0)
		return false;

	if ((beta + gamma) > 1)
		return false;

	dist = t;
	return true;
}