src/raytracer.cc
author Radek Brich <radek.brich@devl.cz>
Sun, 27 Apr 2008 19:56:23 +0200
branchpyrit
changeset 86 ce6abe0aeeae
parent 84 6f7fe14782c2
child 90 f6a72eb99631
permissions -rw-r--r--
BBox - RayPacket intersection clean up

/*
 * raytracer.cc: Raytracer class
 *
 * This file is part of Pyrit Ray Tracer.
 *
 * Copyright 2006, 2007, 2008  Radek Brich
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "raytracer.h"

int pyrit_verbosity = 2;

// Hammersley spherical point distribution
// http://www.cse.cuhk.edu.hk/~ttwong/papers/udpoint/udpoints.html
Vector3 Raytracer::SphereDistribute(int i, int n, Float extent, Vector3 &normal)
{
	Float p, t, st, phi, phirad;
	int kk;

	t = 0;
	for (p=0.5, kk=i; kk; p*=0.5, kk>>=1)
	if (kk & 1)
		t += p;
	t = 1.0 + (t - 1.0)*extent;

	phi = (i + 0.5) / n;
	phirad =  phi * 2.0 * M_PI;

	st = sqrt(1.0 - t*t);

	Float x, y, z, xx, yy, zz, q;
	x = st * cos(phirad);
	y = st * sin(phirad);
	z = t;

	// rotate against Y axis
	q = acos(normal.z);
	zz = z*cos(q) - x*sin(q);
	xx = z*sin(q) + x*cos(q);
	yy = y;

	// rotate against Z axis
	q = atan2f(normal.y, normal.x);
	x = xx*cos(q) - yy*sin(q);
	y = xx*sin(q) + yy*cos(q);
	z = zz;

	return Vector3(x, y, z);
}

// ---- tyto dve funkce budou v budouci verzi metody objektu PhongShader

// calculate shader function
// P is point of intersection, N normal in this point
Colour PhongShader_ambient(const Material &mat, const Vector3 &P)
{
	Colour col;
	if (mat.texture)
		col = mat.texture->evaluate(P);
	else
		col = mat.colour;

	// ambient
	return mat.ambient * col;
}

/*
 P is point of intersection,
 N normal in this point,
 R direction of reflected ray,
 V direction to the viewer
*/
Colour PhongShader_calculate(const Material &mat,
	const Vector3 &P, const Vector3 &N, const Vector3 &R, const Vector3 &V,
	const Light &light)
{
	Colour I = Colour();
	Vector3 L = light.pos - P;
	L.normalize();
	Float L_dot_N = dot(L, N);
	Float R_dot_V = dot(R, V);

	Colour col;
	if (mat.texture)
		col = mat.texture->evaluate(P);
	else
		col = mat.colour;

	// diffuse
	I = mat.diffuse * col * light.colour * L_dot_N;

	// specular
	if (R_dot_V > 0)
		I += mat.specular * light.colour * powf(R_dot_V, mat.shininess);
	return I;
}

Colour Raytracer::shader_evalulate(const Ray &ray, int depth, Shape *origin_shape,
	Float nearest_distance, Shape *nearest_shape)
{
	Colour col = Colour();
	Vector3 P = ray.o + ray.dir * nearest_distance; // point of intersection
	Vector3 normal = nearest_shape->normal(P);
	bool from_inside = false;

	// make shapes double sided
	if (dot(normal, ray.dir) > 0.0)
	{
		normal = - normal;
		from_inside = true;
	}

	col = PhongShader_ambient(*nearest_shape->material, P);

	vector<Light*>::iterator light;
	for (light = lights.begin(); light != lights.end(); light++) {
		Vector3 jo, L = (*light)->pos - P; // direction vector to light
		L.normalize();
		Float L_dot_N = dot(L, normal);
		if (L_dot_N > 0) {
			// test if this light is occluded (sharp shadows)
			if ((*light)->cast_shadows) {
				Ray shadow_ray = Ray(P, L);
				Float dist = FLT_MAX;
				if (top->nearest_intersection(nearest_shape, shadow_ray, dist))
					continue;
			}

			// shading function
			Vector3 R = L - 2.0 * L_dot_N * normal;
			col += PhongShader_calculate(*nearest_shape->material,
				P, normal, R, ray.dir, **light);
		}
	}

	if (depth < max_depth)
	{
		Colour trans_col, refl_col;
		Float trans = nearest_shape->material->transmissivity;
		Float refl = nearest_shape->material->reflectivity;
		const Float cos_i = - dot(normal, ray.dir);

		// reflection
		if (refl > 0.01)
		{
			Vector3 newdir = ray.dir + 2.0 * cos_i * normal;
			Ray newray = Ray(P, newdir);
			refl_col = raytrace(newray, depth + 1, nearest_shape);
		}

		// refraction
		if (trans > 0.01)
		{
			Float n, n1, n2;
			if (from_inside)
			{
				n1 = nearest_shape->material->refract_index;
				n2 = 1.0;
				n = n1;
			}
			else
			{
				n1 = 1.0;
				n2 = nearest_shape->material->refract_index;
				n = 1.0 / n2;
			}
			const Float sin2_t = n*n * (1 - cos_i*cos_i);
			if (sin2_t >= 1.0)
			{
					// totally reflected
					refl += trans;
					trans = 0;
			}
			else
			{
				const Float cos_t = sqrtf(1 - sin2_t);
				const Float Rdiv = 1.0/(n1*cos_i + n2*cos_t);
				const Float Rper = (n1*cos_i - n2*cos_t)*Rdiv;
				const Float Rpar = (n2*cos_i - n1*cos_t)*Rdiv;
				const Float R = (Rper*Rper + Rpar*Rpar)/2;
				refl += R*trans;
				trans = (1-R)*trans;
				Vector3 newdir = n * ray.dir + (n*cos_i - cos_t) * normal;
				Ray newray = Ray(P + 0.001*newdir, newdir);
				trans_col = raytrace(newray, depth + 1, NULL);
			}
		}
		col = (1-refl-trans)*col + refl*refl_col + trans*trans_col;
	}

	// ambient occlusion
	if (!from_inside && ao_samples)
	{
		Float miss = 0;
		for (int i = 0; i < ao_samples; i++) {
			Vector3 dir = SphereDistribute(i, ao_samples, ao_angle, normal);
			Ray ao_ray = Ray(P, dir);
			Float dist = ao_distance;
			Shape *shape_in_way = top->nearest_intersection(nearest_shape, ao_ray, dist);
			if (shape_in_way == NULL)
				miss += 1.0;
			else
				miss += dist / ao_distance;
		}
		Float ao_intensity = miss / ao_samples;
		col = col * ao_intensity;
	}

	return col;
}

Colour Raytracer::raytrace(Ray &ray, int depth, Shape *origin_shape)
{
	Float nearest_distance = Inf;
	Shape *nearest_shape = top->nearest_intersection(origin_shape, ray, nearest_distance);

	if (nearest_shape == NULL)
		return bg_colour;
	else
		return shader_evalulate(ray, depth, origin_shape, nearest_distance, nearest_shape);
}

void Raytracer::raytracePacket(RayPacket &rays, Colour *results)
{
	Float nearest_distances[4] = {Inf,Inf,Inf,Inf};
	Shape *nearest_shapes[4];
	static const Shape *origin_shapes[4] = {NULL, NULL, NULL, NULL};
	top->packet_intersection(origin_shapes, rays, nearest_distances, nearest_shapes);

	for (int i = 0; i < 4; i++)
		if (nearest_shapes[i] == NULL)
			results[i] = bg_colour;
		else
			results[i] = shader_evalulate(rays[i], 0, NULL,
				nearest_distances[i], nearest_shapes[i]);
}

void *Raytracer::raytrace_worker(void *d)
{
	static const int my_queue_size = 256;
	Raytracer *rt = (Raytracer*)d;
	Sample my_queue[my_queue_size];
	Colour my_colours[my_queue_size];
	int my_count;
	Ray ray;
	RayPacket rays;
	const bool can_use_packets = (rt->use_packets && rt->sampler->packetableSamples());
	for (;;)
	{
		pthread_mutex_lock(&rt->sample_queue_mutex);
		while (rt->sample_queue_count == 0)
		{
			if (rt->end_of_samples)
			{
				dbgmsg(4, "T thread [%d] exiting\n", pthread_self());
				pthread_mutex_unlock(&rt->sample_queue_mutex);
				pthread_exit(NULL);
			}
			pthread_cond_wait(&rt->sample_queue_cond, &rt->sample_queue_mutex);
		}

		if (rt->sample_queue_count >= my_queue_size)
			my_count = my_queue_size;
		else
			my_count = rt->sample_queue_count;
		rt->sample_queue_count -= my_count;

		// copy samples to local queue
		if (rt->sample_queue_pos + my_count >= rt->sample_queue_size)
		{
			register int c = rt->sample_queue_size - rt->sample_queue_pos;
			memcpy(my_queue, rt->sample_queue + rt->sample_queue_pos, c*sizeof(Sample));
			memcpy(my_queue + c, rt->sample_queue, (my_count - c)*sizeof(Sample));
			rt->sample_queue_pos = my_count - c;
		}
		else
		{
			memcpy(my_queue, rt->sample_queue + rt->sample_queue_pos,
				my_count*sizeof(Sample));
			rt->sample_queue_pos += my_count;
		}
		if (rt->sample_queue_count <= my_queue_size*2)
			pthread_cond_signal(&rt->worker_ready_cond);
		pthread_mutex_unlock(&rt->sample_queue_mutex);

		// do the work
		if (can_use_packets)
		{
			// packet ray tracing
			assert((my_count % 4) == 0);
			for (int i = 0; i < my_count; i+=4)
			{
				rt->camera->makeRayPacket(my_queue + i, rays);
				rt->raytracePacket(rays, my_colours + i);
			}
		}
		else
		{
			// single ray tracing
			for (int i = 0; i < my_count; i++)
			{
				ray = rt->camera->makeRay(my_queue[i]);
				my_colours[i] = rt->raytrace(ray, 0, NULL);
			}
		}

		// save the results
		pthread_mutex_lock(&rt->sampler_mutex);
		for (int i = 0; i < my_count; i++)
			rt->sampler->saveSample(my_queue[i], my_colours[i]);
		pthread_mutex_unlock(&rt->sampler_mutex);
	}
}

void Raytracer::render()
{
	if (!sampler || !camera || !top)
		return;

	static const int my_count_max = 256;
	sample_queue_size = my_count_max*2*num_threads;
	sample_queue = new Sample [sample_queue_size];
	sample_queue_count = 0;
	int my_count, my_pos;
	int sampnum = 0, sampdone;
	int phase = 1;
	bool more_samples;

	sampler->init();

	// create workers
	dbgmsg(1, "* using %d threads\n", num_threads);
	pthread_t threads[num_threads];

	dbgmsg(1, "* raytracing...\n");

	while ( (sampnum = sampler->initSampleSet()) > 0 )
	{
		my_pos = 0;
		sample_queue_pos = 0;
		sampdone = 0;
		end_of_samples = false;

		for (int t = 0; t < num_threads; t++)
		{
			int rc = pthread_create(&threads[t], NULL, raytrace_worker, (void*)this);
			if (rc) {
				dbgmsg(0, "\nE pthread_create unsuccessful, return code was %d\n", rc);
				exit(1);
			}
		}

		dbgmsg(2, "phase %d:  0%% done", phase);

		pthread_mutex_lock(&sampler_mutex);

		for (;;)
		{
			my_count = 0;
			while ( more_samples = sampler->nextSample(&sample_queue[my_pos++]) )
			{
				my_count++;
				if (my_pos >= sample_queue_size)
					my_pos = 0;
				if (my_count >= my_count_max)
					break;
			}
			if (!more_samples && !my_count)
				break;

			pthread_mutex_unlock(&sampler_mutex);
			pthread_mutex_lock(&sample_queue_mutex);
			sample_queue_count += my_count;

			// wait for workers if there is enough samples ready on queue
			while (sample_queue_count > (2*num_threads-1)*my_count_max)
				pthread_cond_wait(&worker_ready_cond, &sample_queue_mutex);

			pthread_cond_signal(&sample_queue_cond);
			pthread_mutex_unlock(&sample_queue_mutex);

			sampdone += my_count;
			dbgmsg(2, "\b\b\b\b\b\b\b\b%2d%% done", ((long)sampdone - sample_queue_count)*100/sampnum);

			pthread_mutex_lock(&sampler_mutex);

			if (!more_samples)
				break;
		}
		dbgmsg(2, "\b\b\b\b\b\b\b\b100%% done\n");

		pthread_mutex_unlock(&sampler_mutex);

		// wait for workers
		dbgmsg(2, "- waiting for threads to finish\n");

		pthread_mutex_lock(&sample_queue_mutex);
		end_of_samples = true;
		while (sample_queue_count)
		{
			pthread_cond_broadcast(&sample_queue_cond);
			pthread_mutex_unlock(&sample_queue_mutex);
			pthread_mutex_lock(&sample_queue_mutex);
		}
		pthread_cond_broadcast(&sample_queue_cond);
		pthread_mutex_unlock(&sample_queue_mutex);

		for (int t = 0; t < num_threads; t++)
			pthread_join(threads[t], NULL);

		phase ++;
	}

	delete[] sample_queue;
}

void Raytracer::ambientOcclusion(int samples, Float distance, Float angle)
{
	ao_samples = samples;
	ao_distance = distance;
	ao_angle = angle;
	if (ao_distance == 0)
		/* 0 ==> Inf */
		ao_distance = Inf;
}