/*
* shapes.cc: shape classes
*
* This file is part of Pyrit Ray Tracer.
*
* Copyright 2006, 2007, 2008 Radek Brich
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "shapes.h"
#include "serialize.h"
bool Sphere::intersect(const Ray &ray, Float &dist) const
{
Vector3 V = ray.o - center;
register Float d = -dot(V, ray.dir);
register Float Det = d * d - (dot(V,V) - sqr_radius);
register Float t1,t2;
if (Det > 0) {
Det = sqrtf(Det);
t1 = d - Det;
t2 = d + Det;
if (t1 > 0)
{
if (t1 < dist)
{
dist = t1;
return true;
}
}
else if (t2 > 0 && t2 < dist)
{
dist = t2;
return true;
}
}
return false;
}
/* if there should be CSG sometimes, this may be needed... */
bool Sphere::intersect_all(const Ray &ray, Float dist, vector<Float> &allts) const
{
//allts = new vector<Float>();
Vector3 V = ((Ray)ray).o - center;
Float Vd = - dot(V, ray.dir);
Float Det = Vd * Vd - (dot(V,V) - sqr_radius);
if (Det > 0) {
Det = sqrtf(Det);
Float t1 = Vd - Det;
Float t2 = Vd + Det;
if (t1 < 0)
{
if (t2 > 0)
{
// ray from inside of the sphere
allts.push_back(0.0);
allts.push_back(t2);
return true;
}
else
return false;
}
else
{
allts.push_back(t1);
allts.push_back(t2);
return true;
}
}
return false;
}
bool Sphere::intersect_bbox(const BBox &bbox) const
{
register float dmin = 0;
for (int i = 0; i < 3; i++)
{
if (center[i] < bbox.L[i])
dmin += (center[i] - bbox.L[i])*(center[i] - bbox.L[i]);
else
if (center[i] > bbox.H[i])
dmin += (center[i] - bbox.H[i])*(center[i] - bbox.H[i]);
}
if (dmin <= sqr_radius)
return true;
return false;
};
BBox Sphere::get_bbox() const
{
return BBox(center - radius, center + radius);
}
bool Box::intersect(const Ray &ray, Float &dist) const
{
register Float tnear = -Inf;
register Float tfar = Inf;
register Float t1, t2;
for (int i = 0; i < 3; i++)
{
if (ray.dir[i] == 0) {
/* ray is parallel to these planes */
if (ray.o[i] < L[i] || ray.o[i] > H[i])
return false;
}
else
{
/* compute the intersection distance of the planes */
t1 = (L[i] - ray.o[i]) / ray.dir[i];
t2 = (H[i] - ray.o[i]) / ray.dir[i];
if (t1 > t2)
swap(t1, t2);
if (t1 > tnear)
tnear = t1; /* want largest Tnear */
if (t2 < tfar)
tfar = t2; /* want smallest Tfar */
if (tnear > tfar || tfar < 0)
return false; /* box missed; box is behind ray */
}
}
if (tnear < dist)
{
dist = tnear;
return true;
}
return false;
}
bool Box::intersect_bbox(const BBox &bbox) const
{
return (
H.x > bbox.L.x && L.x < bbox.H.x &&
H.y > bbox.L.y && L.y < bbox.H.y &&
H.z > bbox.L.z && L.z < bbox.H.z);
}
const Vector3 Box::normal(const Vector3 &P) const
{
register Vector3 l = P - L;
register Vector3 h = H - P;
if (l.x < h.x)
h.x = -1;
else
{
l.x = h.x;
h.x = +1;
}
if (l.y < h.y)
h.y = -1;
else
{
l.y = h.y;
h.y = +1;
}
if (l.z < h.z)
h.z = -1;
else
{
l.z = h.z;
h.z = +1;
}
if (l.x > l.y)
{
h.x = 0;
if (l.y > l.z)
h.y = 0;
else
h.z = 0;
}
else
{
h.y = 0;
if (l.x > l.z)
h.x = 0;
else
h.z = 0;
}
return h;
}
#ifdef TRI_PLUCKER
inline void Plucker(const Vector3 &p, const Vector3 &q, Float* pl)
{
pl[0] = p.x*q.y - q.x*p.y;
pl[1] = p.x*q.z - q.x*p.z;
pl[2] = p.x - q.x;
pl[3] = p.y*q.z - q.y*p.z;
pl[4] = p.z - q.z;
pl[5] = q.y - p.y;
}
inline Float Side(const Float* pla, const Float* plb)
{
return pla[0]*plb[4] + pla[1]*plb[5] + pla[2]*plb[3] + pla[4]*plb[0] + pla[5]*plb[1] + pla[3]*plb[2];
}
#endif
Triangle::Triangle(Vertex *aA, Vertex *aB, Vertex *aC, Material *amaterial)
: A(aA), B(aB), C(aC)
{
material = amaterial;
const Vector3 c = B->P - A->P;
const Vector3 b = C->P - A->P;
N = cross(c, b);
N.normalize();
#ifdef TRI_PLUCKER
Plucker(B->P,C->P,pla);
Plucker(C->P,A->P,plb);
Plucker(A->P,B->P,plc);
#endif
#if defined(TRI_BARI) || defined(TRI_BARI_PRE)
if (fabsf(N.x) > fabsf(N.y))
{
if (fabsf(N.x) > fabsf(N.z))
k = 0;
else
k = 2;
}
else
{
if (fabsf(N.y) > fabsf(N.z))
k = 1;
else
k = 2;
}
#endif
#ifdef TRI_BARI_PRE
int u = (k + 1) % 3;
int v = (k + 2) % 3;
Float krec = 1.0 / N[k];
nu = N[u] * krec;
nv = N[v] * krec;
nd = dot(N, A->P) * krec;
// first line equation
Float reci = 1.0f / (b[u] * c[v] - b[v] * c[u]);
bnu = b[u] * reci;
bnv = -b[v] * reci;
// second line equation
cnu = -c[u] * reci;
cnv = c[v] * reci;
#endif
}
bool Triangle::intersect(const Ray &ray, Float &dist) const
{
#ifdef TRI_PLUCKER
Float plr[6];
Plucker(ray.o, ray.o+ray.dir, plr);
const bool side0 = Side(plr, pla) >= 0.0;
const bool side1 = Side(plr, plb) >= 0.0;
if (side0 != side1)
return false;
const bool side2 = Side(plr, plc) >= 0.0;
if (side0 != side2)
return false;
const Float t = - dot( (ray.o - A->P), N) / dot(ray.dir,N);
if(t <= Eps || t >= dist)
return false;
dist = t;
return true;
#endif
#if defined(TRI_BARI) || defined(TRI_BARI_PRE)
static const int modulo3[5] = {0,1,2,0,1};
const Vector3 &O = ray.o;
const Vector3 &D = ray.dir;
register const int u = modulo3[k+1];
register const int v = modulo3[k+2];
#endif
#ifdef TRI_BARI_PRE
const Float t = (nd - O[k] - nu * O[u] - nv * O[v]) / (D[k] + nu * D[u] + nv * D[v]);
if (t >= dist || t < Eps)
return false;
const Float hu = O[u] + t * D[u] - A->P[u];
const Float hv = O[v] + t * D[v] - A->P[v];
const Float beta = hv * bnu + hu * bnv;
if (beta < 0.)
return false;
const Float gamma = hu * cnv + hv * cnu;
if (gamma < 0. || beta + gamma > 1.)
return false;
dist = t;
return true;
#endif
#ifdef TRI_BARI
// original barycentric coordinates based intesection
// not optimized, just for reference
const Vector3 c = B - A;
const Vector3 b = C - A;
// distance test
const Float t = - dot( (O-A), N) / dot(D,N);
if (t < Eps || t > dist)
return false;
// calc hitpoint
const Float Hu = O[u] + t * D[u] - A[u];
const Float Hv = O[v] + t * D[v] - A[v];
const Float beta = (b[u] * Hv - b[v] * Hu) / (b[u] * c[v] - b[v] * c[u]);
if (beta < 0)
return false;
const Float gamma = (c[v] * Hu - c[u] * Hv) / (b[u] * c[v] - b[v] * c[u]);
if (gamma < 0)
return false;
if (beta+gamma > 1)
return false;
dist = t;
return true;
#endif
}
#ifdef TRI_BARI_PRE
__m128 Triangle::intersect_packet(const RayPacket &rays, __m128 &dists)
{
static const int modulo3[5] = {0,1,2,0,1};
register const int u = modulo3[k+1];
register const int v = modulo3[k+2];
__m128 mask;
const __m128 t = _mm_div_ps(
_mm_sub_ps(_mm_sub_ps(
_mm_sub_ps(_mm_set_ps1(nd), rays.o.ma[k]),
_mm_mul_ps(_mm_set_ps1(nu), rays.o.ma[u])
), _mm_mul_ps(_mm_set_ps1(nv), rays.o.ma[v])),
_mm_add_ps(rays.dir.ma[k],
_mm_add_ps(_mm_mul_ps(_mm_set_ps1(nu), rays.dir.ma[u]),
_mm_mul_ps(_mm_set_ps1(nv), rays.dir.ma[v])))
);
mask = _mm_and_ps(_mm_cmplt_ps(t, dists), _mm_cmpge_ps(t, mEps));
if (!_mm_movemask_ps(mask))
return mask;
const __m128 hu = _mm_sub_ps(_mm_add_ps(rays.o.ma[u],
_mm_mul_ps(t, rays.dir.ma[u])), _mm_set_ps1(A->P[u]));
const __m128 hv = _mm_sub_ps(_mm_add_ps(rays.o.ma[v],
_mm_mul_ps(t, rays.dir.ma[v])), _mm_set_ps1(A->P[v]));
const __m128 beta = _mm_add_ps(_mm_mul_ps(hv, _mm_set_ps1(bnu)),
_mm_mul_ps(hu, _mm_set_ps1(bnv)));
mask = _mm_and_ps(mask, _mm_cmpge_ps(beta, mZero));
if (!_mm_movemask_ps(mask))
return mask;
const __m128 gamma = _mm_add_ps(_mm_mul_ps(hu, _mm_set_ps1(cnv)),
_mm_mul_ps(hv, _mm_set_ps1(cnu)));
mask = _mm_and_ps(mask, _mm_and_ps(_mm_cmpge_ps(gamma, mZero),
_mm_cmple_ps(_mm_add_ps(beta, gamma), mOne)));
if (!_mm_movemask_ps(mask))
return mask;
for (int i = 0; i < 4; i++)
if ((_mm_movemask_ps(mask)>>i)&1)
((float*)&dists)[i] = ((float*)&t)[i];
return mask;
}
#endif
bool Triangle::intersect_bbox(const BBox &bbox) const
{
const Vector3 boxcenter = (bbox.L+bbox.H)*0.5;
const Vector3 boxhalfsize = (bbox.H-bbox.L)*0.5;
const Vector3 v0 = A->P - boxcenter;
const Vector3 v1 = B->P - boxcenter;
const Vector3 v2 = C->P - boxcenter;
const Vector3 e0 = v1-v0;
const Vector3 e1 = v2-v1;
const Vector3 e2 = v0-v2;
Float fex = fabsf(e0.x);
Float fey = fabsf(e0.y);
Float fez = fabsf(e0.z);
Float p0,p1,p2,min,max,rad;
p0 = e0.z*v0.y - e0.y*v0.z;
p2 = e0.z*v2.y - e0.y*v2.z;
if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;}
rad = fez * boxhalfsize.y + fey * boxhalfsize.z;
if(min>rad || max<-rad) return false;
p0 = -e0.z*v0.x + e0.x*v0.z;
p2 = -e0.z*v2.x + e0.x*v2.z;
if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;}
rad = fez * boxhalfsize.x + fex * boxhalfsize.z;
if(min>rad || max<-rad) return false;
p1 = e0.y*v1.x - e0.x*v1.y;
p2 = e0.y*v2.x - e0.x*v2.y;
if(p2<p1) {min=p2; max=p1;} else {min=p1; max=p2;}
rad = fey * boxhalfsize.x + fex * boxhalfsize.y;
if(min>rad || max<-rad) return false;
fex = fabsf(e1.x);
fey = fabsf(e1.y);
fez = fabsf(e1.z);
p0 = e1.z*v0.y - e1.y*v0.z;
p2 = e1.z*v2.y - e1.y*v2.z;
if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;}
rad = fez * boxhalfsize.y + fey * boxhalfsize.z;
if(min>rad || max<-rad) return false;
p0 = -e1.z*v0.x + e1.x*v0.z;
p2 = -e1.z*v2.x + e1.x*v2.z;
if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;}
rad = fez * boxhalfsize.x + fex * boxhalfsize.z;
if(min>rad || max<-rad) return false;
p0 = e1.y*v0.x - e1.x*v0.y;
p1 = e1.y*v1.x - e1.x*v1.y;
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;}
rad = fey * boxhalfsize.x + fex * boxhalfsize.y;
if(min>rad || max<-rad) return false;
fex = fabsf(e2.x);
fey = fabsf(e2.y);
fez = fabsf(e2.z);
p0 = e2.z*v0.y - e2.y*v0.z;
p1 = e2.z*v1.y - e2.y*v1.z;
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;}
rad = fez * boxhalfsize.y + fey * boxhalfsize.z;
if(min>rad || max<-rad) return false;
p0 = -e2.z*v0.x + e2.x*v0.z;
p1 = -e2.z*v1.x + e2.x*v1.z;
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;}
rad = fez * boxhalfsize.x + fex * boxhalfsize.z;
if(min>rad || max<-rad) return false;
p1 = e2.y*v1.x - e2.x*v1.y;
p2 = e2.y*v2.x - e2.x*v2.y;
if(p2<p1) {min=p2; max=p1;} else {min=p1; max=p2;}
rad = fey * boxhalfsize.x + fex * boxhalfsize.y;
if(min>rad || max<-rad) return false;
/* test overlap in the {x,y,z}-directions */
/* test in X-direction */
min = v0.x;
if (v1.x < min) min = v1.x;
if (v2.x < min) min = v2.x;
max = v0.x;
if (v1.x > max) max = v1.x;
if (v2.x > max) max = v2.x;
if(min>boxhalfsize.x || max<-boxhalfsize.x) return false;
/* test in Y-direction */
min = v0.y;
if (v1.y < min) min = v1.y;
if (v2.y < min) min = v2.y;
max = v0.y;
if (v1.y > max) max = v1.y;
if (v2.y > max) max = v2.y;
if(min>boxhalfsize.y || max<-boxhalfsize.y) return false;
/* test in Z-direction */
min = v0.z;
if (v1.z < min) min = v1.z;
if (v2.z < min) min = v2.z;
max = v0.z;
if (v1.z > max) max = v1.z;
if (v2.z > max) max = v2.z;
if(min>boxhalfsize.z || max<-boxhalfsize.z) return false;
/* test if the box intersects the plane of the triangle */
Vector3 vmin,vmax;
Float v;
for(int q=0;q<3;q++)
{
v=v0[q];
if(N[q]>0.0f)
{
vmin.cell[q]=-boxhalfsize[q] - v;
vmax.cell[q]= boxhalfsize[q] - v;
}
else
{
vmin.cell[q]= boxhalfsize[q] - v;
vmax.cell[q]=-boxhalfsize[q] - v;
}
}
if(dot(N,vmin)>0.0f) return false;
if(dot(N,vmax)>=0.0f) return true;
return false;
}
BBox Triangle::get_bbox() const
{
BBox bbox = BBox();
bbox.L = A->P;
if (B->P.x < bbox.L.x) bbox.L.x = B->P.x;
if (C->P.x < bbox.L.x) bbox.L.x = C->P.x;
if (B->P.y < bbox.L.y) bbox.L.y = B->P.y;
if (C->P.y < bbox.L.y) bbox.L.y = C->P.y;
if (B->P.z < bbox.L.z) bbox.L.z = B->P.z;
if (C->P.z < bbox.L.z) bbox.L.z = C->P.z;
bbox.H = A->P;
if (B->P.x > bbox.H.x) bbox.H.x = B->P.x;
if (C->P.x > bbox.H.x) bbox.H.x = C->P.x;
if (B->P.y > bbox.H.y) bbox.H.y = B->P.y;
if (C->P.y > bbox.H.y) bbox.H.y = C->P.y;
if (B->P.z > bbox.H.z) bbox.H.z = B->P.z;
if (C->P.z > bbox.H.z) bbox.H.z = C->P.z;
return bbox;
}
ostream & Sphere::dump(ostream &st) const
{
return st << "(sphere," << center << "," << radius << ")";
}
ostream & Box::dump(ostream &st) const
{
return st << "(box," << L << "," << H << ")";
}
ostream & Vertex::dump(ostream &st) const
{
return st << "(v," << P << ")";
}
ostream & NormalVertex::dump(ostream &st) const
{
return st << "(vn," << P << "," << N << ")";
}
ostream & Triangle::dump(ostream &st) const
{
int idxA, idxB, idxC;
if (!vertex_index.get(A, idxA))
st << *A << "," << endl;
if (!vertex_index.get(B, idxB))
st << *B << "," << endl;
if (!vertex_index.get(C, idxC))
st << *C << "," << endl;
return st << "(t," << idxA << "," << idxB << "," << idxC << ")";
}