src/scene.cc
author Radek Brich <radek.brich@devl.cz>
Sat, 24 Nov 2007 21:55:41 +0100 (2007-11-24)
branchpyrit
changeset 12 f4fcabf05785
parent 8 e6567b740c5e
child 14 fc18ac4833f2
permissions -rw-r--r--
kd-tree: traversal algorithm (KdTree::nearest_intersection)
/*
 * C++ RayTracer
 * file: scene.cc
 *
 * Radek Brich, 2006
 */

#include <math.h>
#include <float.h>

#include "scene.h"

/* http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter3.htm */
bool BBox::intersect(const Ray &ray, float &a, float &b)
{
	float tnear = -FLT_MAX;
	float tfar = FLT_MAX;
	float t1, t2;

	for (int i = 0; i < 3; i++)
	{
		if (ray.dir.cell[i] == 0) {
			/* ray is parallel to these planes */
			if (ray.a.cell[i] < L.cell[i] || ray.a.cell[i] > R.cell[i])
				return false;
		} else
		{
			/* compute the intersection distance of the planes */
			t1 = (L.cell[i] - ray.a.cell[i]) / ray.dir.cell[i];
			t2 = (R.cell[i] - ray.a.cell[i]) / ray.dir.cell[i];

			if (t1 > t2)
				swap(t1, t2);

			if (t1 > tnear)
				tnear = t1; /* want largest Tnear */
			if (t2 < tfar)
				tfar = t2; /* want smallest Tfar */
			if (tnear > tfar)
				return false; /* box missed */
			if (tfar < 0)
				return false; /* box is behind ray */
		}
	}

	a = tnear;
	b = tfar;
	return true;
}

bool Sphere::intersect(const Ray &ray, float &dist)
{
	Vector3 V = ((Ray)ray).a - center;

	float Vd = - dot(V, ray.dir);
	float Det = Vd * Vd - (dot(V,V) - sqr_radius);

	if (Det > 0) {
		Det = sqrtf(Det);
		float t1 = Vd - Det;
		if (t1 > 0)
		{
			if (t1 < dist) {
				dist = t1;
				return true;
			}
		} else {
			float t2 = Vd + Det;
			if (t2 > 0)
			{
				// ray from inside of the sphere
				dist = t2;
				return true;
			}
		}
	}
	return false;
}

bool Sphere::intersect_all(const Ray &ray, float dist, vector<float> &allts)
{
	//allts = new vector<float>();

	Vector3 V = ((Ray)ray).a - center;
	float Vd = - dot(V, ray.dir);
	float Det = Vd * Vd - (dot(V,V) - sqr_radius);

	if (Det > 0) {
		Det = sqrtf(Det);
		float t1 = Vd - Det;
		float t2 = Vd + Det;
		if (t1 < 0)
		{
			if (t2 > 0)
			{
				// ray from inside of the sphere
				allts.push_back(0.0);
				allts.push_back(t2);
				return true;
			}
			else
				return false;
		}
		else
		{
			allts.push_back(t1);
			allts.push_back(t2);
			return true;
		}
	}
	return false;
}

BBox Sphere::get_bbox()
{
	BBox bbox = BBox();
	bbox.L.x = center.x - radius;
	bbox.L.y = center.y - radius;
	bbox.L.z = center.z - radius;
	bbox.R.x = center.x + radius;
	bbox.R.y = center.y + radius;
	bbox.R.z = center.z + radius;
	return bbox;
}

bool Plane::intersect(const Ray &ray, float &dist)
{
	float dir = dot(N, ray.dir);
	if (dir != 0)
	{
		float newdist = -(dot(N, ray.a) + d) / dir;
		if (newdist > 0 && newdist < dist) {
			dist = newdist;
			return true;
		}
	}
	return false;
}

BBox Plane::get_bbox()
{
	return BBox();
}

// this initialization and following intersection methods implements
// Fast Triangle Intersection algorithm from
// http://www.mpi-inf.mpg.de/~wald/PhD/
Triangle::Triangle(const Vector3 &aA, const Vector3 &aB, const Vector3 &aC, Material *amaterial)
	: A(aA), B(aB), C(aC)
{
	material = amaterial;
	Vector3 c = B - A;
	Vector3 b = C - A;

	N = cross(c, b);

	if (fabsf(N.x) > fabsf(N.y))
	{
		if (fabsf(N.x) > fabsf(N.z))
			k = 0;
		else
			k = 2;
	}
	else
	{
		if (fabsf(N.y) > fabsf(N.z))
			k = 1;
		else
			k = 2;
	}

	int u = (k + 1) % 3;
	int v = (k + 2) % 3;

	float krec = 1.0f / N[k];
	nu = N[u] * krec;
	nv = N[v] * krec;
	nd = dot(N, A) * krec;

	// first line equation
	float reci = 1.0f / (b[u] * c[v] - b[v] * c[u]);
	bnu = b[u] * reci;
	bnv = -b[v] * reci;

	// second line equation
	cnu = c[v] * reci;
	cnv = -c[u] * reci;

	// finalize normal
	N.normalize();
}

// see comment for previous method
bool Triangle::intersect(const Ray &ray, float &dist)
{
	Vector3 O = ray.a;
	Vector3 D = ray.dir;

	const int modulo3[5] = {0,1,2,0,1};
	const int ku = modulo3[k+1];
	const int kv = modulo3[k+2];
	const float lnd = 1.0f / (D[k] + nu * D[ku] + nv * D[kv]);
	const float t = (nd - O[k] - nu * O[ku] - nv * O[kv]) * lnd;

	if (!(t < dist && t > 0))
		return false;

	float hu = O[ku] + t * D[ku] - A[ku];
	float hv = O[kv] + t * D[kv] - A[kv];
	float beta = hv * bnu + hu * bnv;

	if (beta < 0)
		return false;

	float gamma = hu * cnu + hv * cnv;
	if (gamma < 0)
		return false;

	if ((beta + gamma) > 1)
		return false;

	dist = t;
	return true;
}

BBox Triangle::get_bbox()
{
	BBox bbox = BBox();
	bbox.L = A;
	if (B.x < bbox.L.x)  bbox.L.x = B.x;
	if (C.x < bbox.L.x)  bbox.L.x = C.x;
	if (B.y < bbox.L.y)  bbox.L.y = B.y;
	if (C.y < bbox.L.y)  bbox.L.y = C.y;
	if (B.z < bbox.L.z)  bbox.L.z = B.z;
	if (C.z < bbox.L.z)  bbox.L.z = C.z;
	bbox.R = A;
	if (B.x > bbox.R.x)  bbox.R.x = B.x;
	if (C.x > bbox.R.x)  bbox.R.x = C.x;
	if (B.y > bbox.R.y)  bbox.R.y = B.y;
	if (C.y > bbox.R.y)  bbox.R.y = C.y;
	if (B.z > bbox.R.z)  bbox.R.z = B.z;
	if (C.z > bbox.R.z)  bbox.R.z = C.z;
	return bbox;
};