smooth triangles (aka Phong shading)
extend Python binding to support vertex normals and smooth triangles
make bunny.py and realtime_dragon smooth, and fix other demos for new triangle constructor
add Vector::operator/=
/*
* C++ RayTracer
* file: scene.cc
*
* Radek Brich, 2006
*/
#include <math.h>
#include "common.h"
#include "scene.h"
void Camera::rotate(const Quaternion &q)
{
/*
//non-optimized
Quaternion res;
res = q * Quaternion(u) * conjugate(q);
u = res.toVector();
res = q * Quaternion(v) * conjugate(q);
v = res.toVector();
res = q * Quaternion(p) * conjugate(q);
p = res.toVector();
*/
// optimized
Float t2 = q.a*q.b;
Float t3 = q.a*q.c;
Float t4 = q.a*q.d;
Float t5 = -q.b*q.b;
Float t6 = q.b*q.c;
Float t7 = q.b*q.d;
Float t8 = -q.c*q.c;
Float t9 = q.c*q.d;
Float t10 = -q.d*q.d;
Float x,y,z;
x = 2*( (t8 + t10)*p.x + (t6 - t4)*p.y + (t3 + t7)*p.z ) + p.x;
y = 2*( (t4 + t6)*p.x + (t5 + t10)*p.y + (t9 - t2)*p.z ) + p.y;
z = 2*( (t7 - t3)*p.x + (t2 + t9)*p.y + (t5 + t8)*p.z ) + p.z;
p = Vector3(x,y,z);
x = 2*( (t8 + t10)*u.x + (t6 - t4)*u.y + (t3 + t7)*u.z ) + u.x;
y = 2*( (t4 + t6)*u.x + (t5 + t10)*u.y + (t9 - t2)*u.z ) + u.y;
z = 2*( (t7 - t3)*u.x + (t2 + t9)*u.y + (t5 + t8)*u.z ) + u.z;
u = Vector3(x,y,z);
x = 2*( (t8 + t10)*v.x + (t6 - t4)*v.y + (t3 + t7)*v.z ) + v.x;
y = 2*( (t4 + t6)*v.x + (t5 + t10)*v.y + (t9 - t2)*v.z ) + v.y;
z = 2*( (t7 - t3)*v.x + (t2 + t9)*v.y + (t5 + t8)*v.z ) + v.z;
v = Vector3(x,y,z);
p.normalize();
u.normalize();
v.normalize();
}
void Camera::move(const Float fw, const Float left, const Float up)
{
eye = eye + fw*p + left*u + up*v;
}
/* http://www.siggraph.org/education/materials/HyperGraph/raytrace/rtinter3.htm */
bool BBox::intersect(const Ray &ray, Float &a, Float &b)
{
Float tnear = -FLT_MAX;
Float tfar = FLT_MAX;
Float t1, t2;
for (int i = 0; i < 3; i++)
{
if (ray.dir.cell[i] == 0) {
/* ray is parallel to these planes */
if (ray.o.cell[i] < L.cell[i] || ray.o.cell[i] > H.cell[i])
return false;
} else
{
/* compute the intersection distance of the planes */
t1 = (L.cell[i] - ray.o.cell[i]) / ray.dir.cell[i];
t2 = (H.cell[i] - ray.o.cell[i]) / ray.dir.cell[i];
if (t1 > t2)
swap(t1, t2);
if (t1 > tnear)
tnear = t1; /* want largest Tnear */
if (t2 < tfar)
tfar = t2; /* want smallest Tfar */
if (tnear > tfar)
return false; /* box missed */
if (tfar < 0)
return false; /* box is behind ray */
}
}
a = tnear;
b = tfar;
return true;
}
bool Sphere::intersect(const Ray &ray, Float &dist) const
{
Vector3 V = ray.o - center;
register Float d = -dot(V, ray.dir);
register Float Det = d * d - (dot(V,V) - sqr_radius);
if (Det > 0) {
d -= sqrtf(Det);
if (d > 0 && d < dist)
{
dist = d;
return true;
}
}
return false;
}
bool Sphere::intersect_all(const Ray &ray, Float dist, vector<Float> &allts) const
{
//allts = new vector<Float>();
Vector3 V = ((Ray)ray).o - center;
Float Vd = - dot(V, ray.dir);
Float Det = Vd * Vd - (dot(V,V) - sqr_radius);
if (Det > 0) {
Det = sqrtf(Det);
Float t1 = Vd - Det;
Float t2 = Vd + Det;
if (t1 < 0)
{
if (t2 > 0)
{
// ray from inside of the sphere
allts.push_back(0.0);
allts.push_back(t2);
return true;
}
else
return false;
}
else
{
allts.push_back(t1);
allts.push_back(t2);
return true;
}
}
return false;
}
BBox Sphere::get_bbox() const
{
BBox bbox = BBox();
bbox.L = center - radius;
bbox.H = center + radius;
return bbox;
}
bool Box::intersect(const Ray &ray, Float &dist) const
{
Float a,b;
bool res = get_bbox().intersect(ray, a, b);
if (res && a < dist)
{
dist = a;
return true;
}
else
return false;
}
const Vector3 Box::normal(const Vector3 &P) const
{
Vector3 N;
for (int i = 0; i < 3; i++)
{
if (P.cell[i] >= L.cell[i]-Eps && P.cell[i] <= L.cell[i]+Eps)
//if (P.cell[i] == L.cell[i])
{
N.cell[i] = -1.0;
break;
}
if (P.cell[i] >= H.cell[i]-Eps && P.cell[i] <= H.cell[i]+Eps)
//if (P.cell[i] == H.cell[i])
{
N.cell[i] = +1.0;
break;
}
}
return N;
}
#ifdef TRI_PLUCKER
inline void Plucker(const Vector3 &p, const Vector3 &q, Float* pl)
{
pl[0] = p.x*q.y - q.x*p.y;
pl[1] = p.x*q.z - q.x*p.z;
pl[2] = p.x - q.x;
pl[3] = p.y*q.z - q.y*p.z;
pl[4] = p.z - q.z;
pl[5] = q.y - p.y;
}
inline Float Side(const Float* pla, const Float* plb)
{
return pla[0]*plb[4] + pla[1]*plb[5] + pla[2]*plb[3] + pla[4]*plb[0] + pla[5]*plb[1] + pla[3]*plb[2];
}
#endif
Triangle::Triangle(Vertex *aA, Vertex *aB, Vertex *aC, Material *amaterial)
: smooth(false), A(aA), B(aB), C(aC)
{
material = amaterial;
material->reflection = 0;
const Vector3 c = B->P - A->P;
const Vector3 b = C->P - A->P;
N = cross(c, b);
N.normalize();
#ifdef TRI_PLUCKER
Plucker(B->P,C->P,pla);
Plucker(C->P,A->P,plb);
Plucker(A->P,B->P,plc);
#endif
#if defined(TRI_BARI) || defined(TRI_BARI_PRE)
if (fabsf(N.x) > fabsf(N.y))
{
if (fabsf(N.x) > fabsf(N.z))
k = 0;
else
k = 2;
}
else
{
if (fabsf(N.y) > fabsf(N.z))
k = 1;
else
k = 2;
}
#endif
#ifdef TRI_BARI_PRE
int u = (k + 1) % 3;
int v = (k + 2) % 3;
Float krec = 1.0 / N[k];
nu = N[u] * krec;
nv = N[v] * krec;
nd = dot(N, A->P) * krec;
// first line equation
Float reci = 1.0f / (b[u] * c[v] - b[v] * c[u]);
bnu = b[u] * reci;
bnv = -b[v] * reci;
// second line equation
cnu = -c[u] * reci;
cnv = c[v] * reci;
#endif
}
bool Triangle::intersect(const Ray &ray, Float &dist) const
{
#ifdef TRI_PLUCKER
Float plr[6];
Plucker(ray.o, ray.o+ray.dir, plr);
const bool side0 = Side(plr, pla) >= 0.0;
const bool side1 = Side(plr, plb) >= 0.0;
if (side0 != side1)
return false;
const bool side2 = Side(plr, plc) >= 0.0;
if (side0 != side2)
return false;
const Float t = - dot( (ray.o - A->P), N) / dot(ray.dir,N);
if(t <= Eps || t >= dist)
return false;
dist = t;
return true;
#endif
#if defined(TRI_BARI) || defined(TRI_BARI_PRE)
static const int modulo3[5] = {0,1,2,0,1};
const Vector3 &O = ray.o;
const Vector3 &D = ray.dir;
register const int u = modulo3[k+1];
register const int v = modulo3[k+2];
#endif
#ifdef TRI_BARI_PRE
const Float t = (nd - O[k] - nu * O[u] - nv * O[v]) / (D[k] + nu * D[u] + nv * D[v]);
if (t >= dist || t < Eps)
return false;
const Float hu = O[u] + t * D[u] - A->P[u];
const Float hv = O[v] + t * D[v] - A->P[v];
const Float beta = hv * bnu + hu * bnv;
if (beta < 0.)
return false;
const Float gamma = hu * cnv + hv * cnu;
if (gamma < 0. || beta + gamma > 1.)
return false;
dist = t;
return true;
#endif
#ifdef TRI_BARI
// original barycentric coordinates based intesection
// not optimized, just for reference
const Vector3 c = B - A;
const Vector3 b = C - A;
// distance test
const Float t = - dot( (O-A), N) / dot(D,N);
if (t < Eps || t > dist)
return false;
// calc hitpoint
const Float Hu = O[u] + t * D[u] - A[u];
const Float Hv = O[v] + t * D[v] - A[v];
const Float beta = (b[u] * Hv - b[v] * Hu) / (b[u] * c[v] - b[v] * c[u]);
if (beta < 0)
return false;
const Float gamma = (c[v] * Hu - c[u] * Hv) / (b[u] * c[v] - b[v] * c[u]);
if (gamma < 0)
return false;
if (beta+gamma > 1)
return false;
dist = t;
return true;
#endif
}
BBox Triangle::get_bbox() const
{
BBox bbox = BBox();
bbox.L = A->P;
if (B->P.x < bbox.L.x) bbox.L.x = B->P.x;
if (C->P.x < bbox.L.x) bbox.L.x = C->P.x;
if (B->P.y < bbox.L.y) bbox.L.y = B->P.y;
if (C->P.y < bbox.L.y) bbox.L.y = C->P.y;
if (B->P.z < bbox.L.z) bbox.L.z = B->P.z;
if (C->P.z < bbox.L.z) bbox.L.z = C->P.z;
bbox.H = A->P;
if (B->P.x > bbox.H.x) bbox.H.x = B->P.x;
if (C->P.x > bbox.H.x) bbox.H.x = C->P.x;
if (B->P.y > bbox.H.y) bbox.H.y = B->P.y;
if (C->P.y > bbox.H.y) bbox.H.y = C->P.y;
if (B->P.z > bbox.H.z) bbox.H.z = B->P.z;
if (C->P.z > bbox.H.z) bbox.H.z = C->P.z;
return bbox;
};