src/kdtree.cc
author Radek Brich <radek.brich@devl.cz>
Sat, 10 May 2008 14:29:37 +0200
branchpyrit
changeset 95 ca7d4c665531
parent 93 96d65f841791
child 103 3b3257a410fe
permissions -rw-r--r--
build script fixes, add ldflags build option update and enhance demos fix bug in 4x grid oversampling warn if writePNG called while compiled without libpng make shapes in ShapeList const and add many other const needed due to snowball effect slightly optimize Camera::makeRayPacket using _mm_shuffle_ps make Vector SIMD vectorization disabled by default (causes problems) fix bug in implicit reflection of transmissive surfaces, when surface's reflection parameter is set to zero

/*
 * kdtree.cc: KdTree class
 *
 * This file is part of Pyrit Ray Tracer.
 *
 * Copyright 2006, 2007, 2008  Radek Brich
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include <algorithm>
#include <stack>
#include <string>
#include <sstream>

#include "kdtree.h"
#include "serialize.h"

class ShapeBound
{
public:
	const Shape *shape;
	Float pos;
	bool end;
	ShapeBound(const Shape *ashape, const Float apos, const bool aend):
		shape(ashape), pos(apos), end(aend) {};
	friend bool operator<(const ShapeBound& a, const ShapeBound& b)
	{
		if (a.pos == b.pos)
			return a.shape < b.shape;
		else
			return a.pos < b.pos;
	};
};

// stack element for kd-tree traversal
struct StackElem
{
	KdNode* node; /* pointer to far child */
	Float t; /* the entry/exit signed distance */
	Vector pb; /* the coordinates of entry/exit point */
	int prev;
};

// ----------------------------------------

KdNode::~KdNode()
{
	if (isLeaf())
		delete getShapes();
}

// kd-tree recursive build algorithm, inspired by PBRT (www.pbrt.org)
void KdTree::recursive_build(KdNode *node, const BBox &bounds, int maxdepth)
{
	ShapeList *shapes = node->getShapes();

	if (maxdepth <= 0 || shapes->size() <= 2)
	{
		node->setLeaf();
		return;
	}

	// choose split axis
	/*axis = 0;
	if (bounds.h() > bounds.w() && bounds.h() > bounds.d())
		axis = 1;
	if (bounds.d() > bounds.w() && bounds.d() > bounds.h())
		axis = 2;
*/
	// create sorted list of shape bounds (= find all posible splits)
	vector<ShapeBound> edges[3];
	ShapeList::iterator shape;
	for (shape = shapes->begin(); shape != shapes->end(); shape++)
	{
		BBox shapebounds = (*shape)->get_bbox();
		for (int ax = 0; ax < 3; ax++)
		{
			edges[ax].push_back(ShapeBound(*shape, shapebounds.L[ax], 0));
			edges[ax].push_back(ShapeBound(*shape, shapebounds.H[ax], 1));
		}
	}
	for (int ax = 0; ax < 3; ax++)
		sort(edges[ax].begin(), edges[ax].end());

	// choose best split pos
	const Float K = 1.4f; // constant, K = cost of traversal / cost of ray-triangle intersection
	Float SAV = (bounds.w()*bounds.h() +  // surface area of node
		bounds.w()*bounds.d() + bounds.h()*bounds.d());
	Float cost = SAV * (K + shapes->size()); // initial cost = non-split cost

	vector<ShapeBound>::iterator edge, splitedge = edges[0].end();
	int axis = 0;
	for (int ax = 0; ax < 3; ax++)
	{
		int lnum = 0, rnum = (int)shapes->size();
		BBox lbb = bounds;
		BBox rbb = bounds;
		for (edge = edges[ax].begin(); edge != edges[ax].end(); edge++)
		{
			if (edge->end)
				rnum--;

			// calculate SAH cost of this split
			lbb.H[ax] = edge->pos;
			rbb.L[ax] = edge->pos;
			Float SAL = (lbb.w()*lbb.h() + lbb.w()*lbb.d() + lbb.h()*lbb.d());
			Float SAR = (rbb.w()*rbb.h() + rbb.w()*rbb.d() + rbb.h()*rbb.d());
			Float splitcost = K*SAV + SAL*(K + lnum) + SAR*(K + rnum);

			if (splitcost < cost)
			{
				axis = ax;
				splitedge = edge;
				cost = splitcost;
			}

			if (!edge->end)
				lnum++;
		}
	}

	// we actually need to compare with edges[0].end(), but
	// MSVC does not allow comparison of iterators from differen instances of vector
	// it's OK this way, because axis will be zero if no good split was found
	if (splitedge == edges[axis].end())
	{
		node->setLeaf();
		return;
	}

	node->setSplit(splitedge->pos);

#if 0
// export kd-tree as .obj for visualization
// this would be hard to reconstruct later
	static ofstream F("kdtree.obj");
	Vector v;
	static int f=0;
	v[axis] = node->getSplit();
	v[(axis+1)%3] = bounds.L[(axis+1)%3];
	v[(axis+2)%3] = bounds.L[(axis+2)%3];
	F << "v " << v.x << " " << v.y << " " << v.z << endl;
	v[(axis+1)%3] = bounds.L[(axis+1)%3];
	v[(axis+2)%3] = bounds.H[(axis+2)%3];
	F << "v " << v.x << " " << v.y << " " << v.z << endl;
	v[(axis+1)%3] = bounds.H[(axis+1)%3];
	v[(axis+2)%3] = bounds.H[(axis+2)%3];
	F << "v " << v.x << " " << v.y << " " << v.z << endl;
	v[(axis+1)%3] = bounds.H[(axis+1)%3];
	v[(axis+2)%3] = bounds.L[(axis+2)%3];
	F << "v " << v.x << " " << v.y << " " << v.z << endl;
	F << "f " << f+1 << " " << f+2 << " " << f+3 << " " << f+4 << endl;
	f += 4;
#endif

	// split this node
	delete shapes;

	BBox lbb = bounds;
	BBox rbb = bounds;
	lbb.H[axis] = node->getSplit();
	rbb.L[axis] = node->getSplit();
	node->setChildren(new (mempool.alloc()) KdNode);
	new (mempool.alloc()) KdNode;
	node->setAxis(axis);

	for (edge = edges[axis].begin(); edge != splitedge; edge++)
		if (!edge->end && edge->shape->intersect_bbox(lbb))
			node->getLeftChild()->addShape(edge->shape);
	for (edge = splitedge; edge < edges[axis].end(); edge++)
		if (edge->end && edge->shape->intersect_bbox(rbb))
			node->getRightChild()->addShape(edge->shape);

	recursive_build(node->getLeftChild(), lbb, maxdepth-1);
	recursive_build(node->getRightChild(), rbb, maxdepth-1);
}

void KdTree::build()
{
	dbgmsg(1, "* building kd-tree\n");
	root = new KdNode();
	ShapeList::iterator shape;
	for (shape = shapes.begin(); shape != shapes.end(); shape++)
		root->addShape(*shape);
	recursive_build(root, bbox, max_depth);
	built = true;
}

/* algorithm by Vlastimil Havran, Heuristic Ray Shooting Algorithms, appendix C */
const Shape *KdTree::nearest_intersection(const Shape *origin_shape, const Ray &ray,
	Float &nearest_distance)
{
	Float a, b; /* entry/exit signed distance */
	Float t;    /* signed distance to the splitting plane */

	/* if we have no tree, fall back to naive test */
	if (!built)
		return Container::nearest_intersection(origin_shape, ray, nearest_distance);

	if (!bbox.intersect(ray, a, b))
		return NULL;

	/* pointers to the far child node and current node */
	KdNode *farchild, *node;
	node = root;

#ifdef MSVC
	// MSVC wants constant expression here... hope it won't overflow :)
	StackElem stack[64];
#else
	StackElem stack[max_depth];
#endif

	int entry = 0, exit = 1;
	stack[entry].t = a;

	/* distinguish between internal and external origin of a ray*/
	if (a >= 0.0)
		stack[entry].pb = ray.o + ray.dir * a; /* external */
	else
		stack[entry].pb = ray.o;               /* internal */

	/* setup initial exit point in the stack */
	stack[exit].t = b;
	stack[exit].pb = ray.o + ray.dir * b;
	stack[exit].node = NULL;

	/* loop, traverse through the whole kd-tree, until an object is intersected or ray leaves the scene */
	Float splitVal;
	int axis;
	static const int mod3[] = {0,1,2,0,1};
	const Vector invdir = 1 / ray.dir;
	while (node)
	{
		/* loop until a leaf is found */
		while (!node->isLeaf())
		{
			/* retrieve position of splitting plane */
			splitVal = node->getSplit();
			axis = node->getAxis();

			if (stack[entry].pb[axis] <= splitVal)
			{
				if (stack[exit].pb[axis] <= splitVal)
				{ /* case N1, N2, N3, P5, Z2, and Z3 */
					node = node->getLeftChild();
					continue;
				}
				if (stack[entry].pb[axis] == splitVal)
				{ /* case Z1 */
					node = node->getRightChild();
					continue;
				}
				/* case N4 */
				farchild = node->getRightChild();
				node = node->getLeftChild();
			}
			else
			{ /* (stack[entry].pb[axis] > splitVal) */
				if (stack[exit].pb[axis] > splitVal)
				{
					/* case P1, P2, P3, and N5 */
					node = node->getRightChild();
					continue;
				}
				/* case P4 */
				farchild = node->getLeftChild();
				node = node->getRightChild();
			}

			/* case P4 or N4 . . . traverse both children */

			/* signed distance to the splitting plane */
			t = (splitVal - ray.o[axis]) * invdir[axis];

			/* setup the new exit point and push it onto stack */
			register int tmp = exit;

			exit++;
			if (exit == entry)
				exit++;
			assert(exit < max_depth);

			stack[exit].prev = tmp;
			stack[exit].t = t;
			stack[exit].node = farchild;
			stack[exit].pb[axis] = splitVal;
			stack[exit].pb[mod3[axis+1]] = ray.o[mod3[axis+1]]
				+ t * ray.dir[mod3[axis+1]];
			stack[exit].pb[mod3[axis+2]] = ray.o[mod3[axis+2]]
				+ t * ray.dir[mod3[axis+2]];
		}

		/* current node is the leaf . . . empty or full */
		const Shape *nearest_shape = NULL;
		Float dist = stack[exit].t;
		ShapeList::iterator shape;
		for (shape = node->getShapes()->begin(); shape != node->getShapes()->end(); shape++)
			if (*shape != origin_shape && (*shape)->intersect(ray, dist)
			&& dist >= stack[entry].t - Eps)
			{
				nearest_shape = *shape;
				nearest_distance = dist;
			}

		if (nearest_shape)
			return nearest_shape;

		entry = exit;

		/* retrieve the pointer to the next node,
		it is possible that ray traversal terminates */
		node = stack[entry].node;
		exit = stack[entry].prev;
	}

	/* ray leaves the scene */
	return NULL;
}

#ifndef NO_SIMD
// stack element for kd-tree traversal (packet version)
struct StackElem4
{
	KdNode* node; /* pointer to far child */
	mfloat4 t; /* the entry/exit signed distance */
	VectorPacket pb; /* the coordinates of entry/exit point */
	int prev;
};

void KdTree::packet_intersection(const Shape* const* origin_shapes, const RayPacket &rays,
		Float *nearest_distances, const Shape **nearest_shapes)
{
	mfloat4 a, b; /* entry/exit signed distance */
	mfloat4 t;    /* signed distance to the splitting plane */
	mfloat4 mask = mZero;

	/* if we have no tree, fall back to naive test */
	if (!built)
		Container::packet_intersection(origin_shapes, rays, nearest_distances, nearest_shapes);

	// nearest_shapes[0..4] = NULL
	memset(nearest_shapes, 0, 4*sizeof(Shape*));

	mask = bbox.intersect_packet(rays, a, b);
	if (!mmovemask(mask))
		return;

	/* pointers to the far child node and current node */
	KdNode *farchild, *node;
	node = root;

#ifdef MSVC
	// MSVC wants constant expression here... hope it won't overflow :)
	StackElem4 stack[64];
#else
	StackElem4 stack[max_depth];
#endif

	int entry = 0, exit = 1;
	stack[entry].t = a;

	/* distinguish between internal and external origin of a ray*/
	t = mcmplt(a, mZero);
	stack[entry].pb = rays.o + rays.dir * a;
	stack[entry].pb.mx = mselect(t, rays.o.mx, stack[entry].pb.mx);
	stack[entry].pb.my = mselect(t, rays.o.my, stack[entry].pb.my);
	stack[entry].pb.mz = mselect(t, rays.o.mz, stack[entry].pb.mz);

	/* setup initial exit point in the stack */
	stack[exit].t = b;
	stack[exit].pb = rays.o + rays.dir * b;
	stack[exit].node = NULL;

	/* loop, traverse through the whole kd-tree,
	until an object is intersected or ray leaves the scene */
	mfloat4 splitVal;
	int axis;
	static const int mod3[] = {0,1,2,0,1};
	const VectorPacket invdirs = mOne / rays.dir;
	while (node)
	{
		/* loop until a leaf is found */
		while (!node->isLeaf())
		{
			/* retrieve position of splitting plane */
			splitVal = mset1(node->getSplit());
			axis = node->getAxis();

			// mask out invalid rays with near > far
			const mfloat4 curmask = mand(mask, mcmple(stack[entry].t, stack[exit].t));
			const mfloat4 entry_lt = mcmplt(stack[entry].pb.ma[axis], splitVal);
			const mfloat4 entry_gt = mcmpgt(stack[entry].pb.ma[axis], splitVal);
			const mfloat4 exit_lt = mcmplt(stack[exit].pb.ma[axis], splitVal);
			const mfloat4 exit_gt = mcmpgt(stack[exit].pb.ma[axis], splitVal);

			// if all of
			// stack[entry].pb[axis] <= splitVal,
			// stack[exit].pb[axis] <= splitVal
			if (!mmovemask(
				mand(mor(entry_gt, exit_gt), curmask)))
			{
				node = node->getLeftChild();
				continue;
			}

			// if all of
			// stack[entry].pb[axis] >= splitVal,
			// stack[exit].pb[axis] >= splitVal
			if (!mmovemask(
				mand(mor(entry_lt, exit_lt), curmask)))
			{
				node = node->getRightChild();
				continue;
			}

			// any of
			// stack[entry].pb[axis] < splitVal,
			// stack[exit].pb[axis] > splitVal
			int cond1 = mmovemask(
				mand(mand(entry_lt, exit_gt), curmask));

			// any of
			// stack[entry].pb[axis] > splitVal,
			// stack[exit].pb[axis] < splitVal
			int cond2 = mmovemask(
				mand(mand(entry_gt, exit_lt), curmask));

			if ((!cond1 && !cond2) || (cond1 && cond2))
			{
				// fall back to single rays
				// FIXME: split rays and continue
				for (int i = 0; i < 4; i++)
					if (!nearest_shapes[i])
						nearest_shapes[i] = nearest_intersection(origin_shapes[i],
							rays[i], nearest_distances[i]);
				return;
			}

			if (cond1)
			{
				farchild = node->getRightChild();
				node = node->getLeftChild();
			}
			else
			{
				farchild = node->getLeftChild();
				node = node->getRightChild();
			}

			/* traverse both children */

			/* signed distance to the splitting plane */
			t = mmul(msub(splitVal, rays.o.ma[axis]), invdirs.ma[axis]);

			/* setup the new exit point and push it onto stack */
			register int tmp = exit;

			exit++;
			if (exit == entry)
				exit++;
			assert(exit < max_depth);

			stack[exit].prev = tmp;
			stack[exit].t = t;
			stack[exit].node = farchild;
			stack[exit].pb.ma[axis] = splitVal;
			stack[exit].pb.ma[mod3[axis+1]] =
				madd(rays.o.ma[mod3[axis+1]], mmul(t, rays.dir.ma[mod3[axis+1]]));
			stack[exit].pb.ma[mod3[axis+2]] =
				madd(rays.o.ma[mod3[axis+2]], mmul(t, rays.dir.ma[mod3[axis+2]]));
		}

		/* current node is the leaf . . . empty or full */
		mfloat4 dists = stack[exit].t;
		ShapeList::iterator shape;
		mfloat4 results;
		mfloat4 newmask = mask;
		for (shape = node->getShapes()->begin(); shape != node->getShapes()->end(); shape++)
		{
			results = (*shape)->intersect_packet(rays, dists);
			int valid = mmovemask(
				mand(mask, mand(results,
				mcmpge(dists, msub(stack[entry].t, mEps)))));
			for (int i = 0; i < 4; i++)
			{
				if (*shape != origin_shapes[i] && ((valid>>i)&1))
				{
					nearest_shapes[i] = *shape;
					nearest_distances[i] = ((float*)&dists)[i];
					((int*)&newmask)[i] = 0;
				}
			}
		}

		mask = newmask;
		if (!mmovemask(mask))
			return;

		entry = exit;

		/* retrieve the pointer to the next node,
		it is possible that ray traversal terminates */
		node = stack[entry].node;
		exit = stack[entry].prev;
	}

	/* ray leaves the scene */
}
#endif

ostream & operator<<(ostream &st, KdNode &node)
{
	if (node.isLeaf())
	{
		st << "(l," << node.getShapes()->size();
		ShapeList::iterator shape;
		for (shape = node.getShapes()->begin(); shape != node.getShapes()->end(); shape++)
			st << "," << shape_index[*shape];
		st << ")";
	}
	else
	{
		st << "(s," << (char)('x'+node.getAxis()) << "," << node.getSplit() << ",";
		st << *node.getLeftChild() << ",";
		st << *node.getRightChild() << ")";
	}
	return st;
}

ostream & KdTree::dump(ostream &st) const
{
	if (!built)
		return Container::dump(st);

	st << "(kdtree," << shapes.size();
	ShapeList::const_iterator shape;
	for (shape = shapes.begin(); shape != shapes.end(); shape++)
	{
		int idx;
		if (!shape_index.get(*shape, idx))
			st << "," << endl << **shape;
	}
	return st << "," << endl << *getRootNode() << ")";
}

void KdTree::recursive_load(istream &st, KdNode *node)
{
	string s;
	istringstream is;

	getline(st, s, ',');
	trim(s);

	if (s.compare("(s") == 0)
	{
		// split
		int axis;
		Float split;

		delete node->getShapes();
		node->setChildren(new KdNode[2]);

		getline(st, s, ',');
		axis = s.c_str()[0]-'x';
		node->setAxis(axis);

		st >> split;
		getline(st, s, ',');
		node->setSplit(split);

		recursive_load(st, node->getLeftChild());
		getline(st, s, ',');
		recursive_load(st, node->getRightChild());
		getline(st, s, ')');
	}

	if (s.compare("(l") == 0)
	{
		// leaf
		int count, idx;

		node->setLeaf();

		st >> count;
		for (int i = 0; i < count; i++)
		{
			getline(st, s, ',');
			st >> idx;
			node->addShape(shapes[idx]);
		}
		getline(st, s, ')');
	}
}

istream & KdTree::load(istream &st, Material *mat)
{
	string s;
	istringstream is;

	getline(st, s, ',');
	if (s.compare("(kdtree") != 0)
		return st;

	dbgmsg(1, "* loading kd-tree\n");

	shapes.clear();
	if (root) delete root;
	root = new KdNode();

	getline(st, s, ',');
	int shape_count;
	is.str(s);
	is >> shape_count;

	Shape *shape;
	for (int i = 0; i < shape_count; i++)
	{
		shape = loadShape(st, mat);
		Container::addShape(shape);
		getline(st, s, ',');
	}

	recursive_load(st, root);

	built = true;
	return st;
}