build script fixes, add ldflags build option
update and enhance demos
fix bug in 4x grid oversampling
warn if writePNG called while compiled without libpng
make shapes in ShapeList const
and add many other const needed due to snowball effect
slightly optimize Camera::makeRayPacket using _mm_shuffle_ps
make Vector SIMD vectorization disabled by default (causes problems)
fix bug in implicit reflection of transmissive surfaces,
when surface's reflection parameter is set to zero
/*
* octree.cc: Octree class
*
* This file is part of Pyrit Ray Tracer.
*
* Copyright 2007, 2008 Radek Brich
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "octree.h"
OctreeNode::~OctreeNode()
{
if (isLeaf())
{
leaf = leaf^1; // zero leaf bit
delete shapes;
}
else
delete[] children;
}
void OctreeNode::subdivide(const BBox &bbox, int maxdepth)
{
ShapeList *l_shapes = getShapes();
// prepare children (this also sets this node as non-leaf)
makeChildren();
// evaluate centres for axes
const Float xsplit = (bbox.L.x + bbox.H.x)*0.5f;
const Float ysplit = (bbox.L.y + bbox.H.y)*0.5f;
const Float zsplit = (bbox.L.z + bbox.H.z)*0.5f;
// set bounding boxes for children
BBox childbb[8] = {bbox, bbox, bbox, bbox, bbox, bbox, bbox, bbox};
for (int i = 0; i < 4; i++)
{
// this is little obfuscated, so on right are listed affected children
// the idea is to cut every axis once per child, making 8 combinations
childbb[i].H.x = xsplit; // 0,1,2,3
childbb[i+4].L.x = xsplit; // 4,5,6,7
childbb[i+(i>>1<<1)].H.y = ysplit; // 0,1,4,5
childbb[i+(i>>1<<1)+2].L.y = ysplit;// 2,3,6,7
childbb[i<<1].H.z = zsplit; // 0,2,4,6
childbb[(i<<1)+1].L.z = zsplit; // 1,3,5,7
}
// distribute shapes to children
ShapeList::iterator sh;
unsigned int shapenum = 0;
for (sh = l_shapes->begin(); sh != l_shapes->end(); sh++)
{
for (int i = 0; i < 8; i++)
if ((*sh)->intersect_bbox(childbb[i]))
{
getChild(i)->addShape(*sh);
shapenum++;
}
}
if ((l_shapes->size() <= 8 && shapenum > 2*l_shapes->size())
|| shapenum >= 6*l_shapes->size())
{
// bad subdivision, revert
delete[] children;
setShapes(l_shapes);
return;
}
// remove shapes and set this node to non-leaf
delete l_shapes;
// recursive subdivision
for (int i = 0; i < 8; i++)
if (maxdepth > 1 && getChild(i)->getShapes()->size() > 4)
children[i].subdivide(childbb[i], maxdepth-1);
}
void Octree::build()
{
dbgmsg(1, "* building octree\n");
root = new OctreeNode();
ShapeList::iterator shape;
for (shape = shapes.begin(); shape != shapes.end(); shape++)
root->addShape(*shape);
root->subdivide(bbox, max_depth);
built = true;
}
/*******************************************************
octree traversal algorithm as described in paper
"An Efficient Parametric Algorithm for Octree Traversal"
by J. Revelles, C. Urena and M. Lastra.
see revision 37 for original recursive version
*******************************************************/
struct OctreeTravState
{
Float tx0,ty0,tz0,tx1,ty1,tz1,txm,tym,tzm;
OctreeNode *node;
int next;
OctreeTravState() {};
OctreeTravState(
const Float atx0, const Float aty0, const Float atz0,
const Float atx1, const Float aty1, const Float atz1,
const Float atxm, const Float atym, const Float atzm,
OctreeNode *const anode, const int anext):
tx0(atx0), ty0(aty0), tz0(atz0), tx1(atx1), ty1(aty1), tz1(atz1),
txm(atxm), tym(atym), tzm(atzm), node(anode), next(anext) {};
};
inline const int &next_node(const Float &txm, const int &xnode,
const Float &tym, const int &ynode, const Float &tzm, const int &znode)
{
if (txm < tym)
{
if (txm < tzm)
return xnode;
else
return znode;
}
else
{
if (tym < tzm)
return ynode;
else
return znode;
}
}
const Shape * Octree::nearest_intersection(const Shape *origin_shape, const Ray &ray,
Float &nearest_distance)
{
/* if we have no tree, fall back to naive test */
if (!built)
return Container::nearest_intersection(origin_shape, ray, nearest_distance);
#ifdef MSVC
// MSVC wants constant expression here... hope it won't overflow :)
OctreeTravState st[20];
#else
OctreeTravState st[max_depth+1];
#endif
OctreeTravState *st_cur = st;
# define node st_cur->node
# define tx0 st_cur->tx0
# define ty0 st_cur->ty0
# define tz0 st_cur->tz0
# define tx1 st_cur->tx1
# define ty1 st_cur->ty1
# define tz1 st_cur->tz1
# define txm st_cur->txm
# define tym st_cur->tym
# define tzm st_cur->tzm
int a = 0;
Vector ro(ray.o);
Vector rdir(ray.dir);
if (rdir.x < 0.0)
{
ro.x = (bbox.L.x+bbox.H.x) - ro.x;
rdir.x = -rdir.x;
a |= 4;
}
if (rdir.y < 0.0)
{
ro.y = (bbox.L.y+bbox.H.y) - ro.y;
rdir.y = -rdir.y;
a |= 2;
}
if (rdir.z < 0.0)
{
ro.z = (bbox.L.z+bbox.H.z) - ro.z;
rdir.z = -rdir.z;
a |= 1;
}
if (rdir.x == 0.0f) rdir.x = Eps;
if (rdir.y == 0.0f) rdir.y = Eps;
if (rdir.z == 0.0f) rdir.z = Eps;
rdir.x = 1.0f/rdir.x;
rdir.y = 1.0f/rdir.y;
rdir.z = 1.0f/rdir.z;
tx0 = (bbox.L.x - ro.x) * rdir.x;
tx1 = (bbox.H.x - ro.x) * rdir.x;
ty0 = (bbox.L.y - ro.y) * rdir.y;
ty1 = (bbox.H.y - ro.y) * rdir.y;
tz0 = (bbox.L.z - ro.z) * rdir.z;
tz1 = (bbox.H.z - ro.z) * rdir.z;
if (max3(tx0,ty0,tz0) >= min3(tx1,ty1,tz1))
return NULL;
node = root;
st_cur->next = -1;
const Shape *nearest_shape = NULL;
for (;;)
{
if (st_cur->next == -1)
{
st_cur->next = 8;
// if ray does intersect this node
if (!(tx1 < 0.0 || ty1 < 0.0 || tz1 < 0.0))
{
if (node->isLeaf())
{
ShapeList::iterator shape;
//register Float mindist = max3(tx0,ty0,tz0);
register Float dist = min(nearest_distance, min3(tx1,ty1,tz1));
for (shape = node->getShapes()->begin(); shape != node->getShapes()->end(); shape++)
if (*shape != origin_shape && (*shape)->intersect(ray, dist))
{
nearest_shape = *shape;
nearest_distance = dist;
}
if (nearest_shape != NULL)
return nearest_shape;
}
else
{
txm = 0.5f * (tx0+tx1);
tym = 0.5f * (ty0+ty1);
tzm = 0.5f * (tz0+tz1);
// first node
st_cur->next = 0;
if (tx0 > ty0)
{
if (tx0 > tz0)
{ // YZ
if (tym < tx0)
st_cur->next |= 2;
if (tzm < tx0)
st_cur->next |= 1;
}
else
{ // XY
if (txm < tz0)
st_cur->next |= 4;
if (tym < tz0)
st_cur->next |= 2;
}
}
else
{
if (ty0 > tz0)
{ // XZ
if (txm < ty0)
st_cur->next |= 4;
if (tzm < ty0)
st_cur->next |= 1;
}
else
{ // XY
if (txm < tz0)
st_cur->next |= 4;
if (tym < tz0)
st_cur->next |= 2;
}
}
}
}
}
while (st_cur->next == 8)
{
// pop state from stack
if (st_cur == st)
return NULL; // nothing to pop, finish
--st_cur;
}
// push current state
*(st_cur+1) = *st_cur;
++st_cur;
switch (st_cur->next)
{
case 0:
tx1 = txm;
ty1 = tym;
tz1 = tzm;
node = node->getChild(a);
(st_cur-1)->next = next_node(txm, 4, tym, 2, tzm, 1);
break;
case 1:
tz0 = tzm;
tx1 = txm;
ty1 = tym;
node = node->getChild(1^a);
(st_cur-1)->next = next_node(txm, 5, tym, 3, tz1, 8);
break;
case 2:
ty0 = tym;
tx1 = txm;
tz1 = tzm;
node = node->getChild(2^a);
(st_cur-1)->next = next_node(txm, 6, ty1, 8, tzm, 3);
break;
case 3:
ty0 = tym;
tz0 = tzm;
tx1 = txm;
node = node->getChild(3^a);
(st_cur-1)->next = next_node(txm, 7, ty1, 8, tz1, 8);
break;
case 4:
tx0 = txm;
ty1 = tym;
tz1 = tzm;
node = node->getChild(4^a);
(st_cur-1)->next = next_node(tx1, 8, tym, 6, tzm, 5);
break;
case 5:
tx0 = txm;
tz0 = tzm;
ty1 = tym;
node = node->getChild(5^a);
(st_cur-1)->next = next_node(tx1, 8, tym, 7, tz1, 8);
break;
case 6:
tx0 = txm;
ty0 = tym;
tz1 = tzm;
node = node->getChild(6^a);
(st_cur-1)->next = next_node(tx1, 8, ty1, 8, tzm, 7);
break;
case 7:
tx0 = txm;
ty0 = tym;
tz0 = tzm;
node = node->getChild(7^a);
(st_cur-1)->next = 8;
break;
}
st_cur->next = -1;
}
}