/*
* octree.cc: Octree class
*
* This file is part of Pyrit Ray Tracer.
*
* Copyright 2007, 2008 Radek Brich
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "octree.h"
const int Octree::MAX_DEPTH = 10;
OctreeNode::~OctreeNode()
{
if (isLeaf())
{
leaf = leaf^1; // zero leaf bit
delete shapes;
}
else
delete[] children;
}
void OctreeNode::subdivide(const BBox &bbox, int maxdepth)
{
ShapeList *l_shapes = getShapes();
// prepare children (this also sets this node as non-leaf)
makeChildren();
// evaluate centres for axes
const Float xsplit = (bbox.L.x + bbox.H.x)*0.5f;
const Float ysplit = (bbox.L.y + bbox.H.y)*0.5f;
const Float zsplit = (bbox.L.z + bbox.H.z)*0.5f;
// set bounding boxes for children
BBox childbb[8] = {bbox, bbox, bbox, bbox, bbox, bbox, bbox, bbox};
for (int i = 0; i < 4; i++)
{
// this is little obfuscated, so on right are listed affected children
// the idea is to cut every axis once per child, making 8 combinations
childbb[i].H.x = xsplit; // 0,1,2,3
childbb[i+4].L.x = xsplit; // 4,5,6,7
childbb[i+(i>>1<<1)].H.y = ysplit; // 0,1,4,5
childbb[i+(i>>1<<1)+2].L.y = ysplit;// 2,3,6,7
childbb[i<<1].H.z = zsplit; // 0,2,4,6
childbb[(i<<1)+1].L.z = zsplit; // 1,3,5,7
}
// distribute shapes to children
ShapeList::iterator sh;
unsigned int shapenum = 0;
for (sh = l_shapes->begin(); sh != l_shapes->end(); sh++)
{
for (int i = 0; i < 8; i++)
if ((*sh)->intersect_bbox(childbb[i]))
{
getChild(i)->addShape(*sh);
shapenum++;
}
}
if ((l_shapes->size() <= 8 && shapenum > 2*l_shapes->size())
|| shapenum >= 6*l_shapes->size())
{
// bad subdivision, revert
delete[] children;
setShapes(l_shapes);
return;
}
// remove shapes and set this node to non-leaf
delete l_shapes;
// recursive subdivision
for (int i = 0; i < 8; i++)
if (maxdepth > 1 && getChild(i)->getShapes()->size() > 4)
children[i].subdivide(childbb[i], maxdepth-1);
}
void Octree::build()
{
dbgmsg(1, "* building octree\n");
root = new OctreeNode();
ShapeList::iterator shape;
for (shape = shapes.begin(); shape != shapes.end(); shape++)
root->addShape(*shape);
root->subdivide(bbox, MAX_DEPTH);
built = true;
}
/*******************************************************
octree traversal algorithm as described in paper
"An Efficient Parametric Algorithm for Octree Traversal"
by J. Revelles, C. Urena and M. Lastra.
see revision 37 for original recursive version
*******************************************************/
struct OctreeTravState
{
Float tx0,ty0,tz0,tx1,ty1,tz1,txm,tym,tzm;
OctreeNode *node;
int next;
OctreeTravState() {};
OctreeTravState(
const Float atx0, const Float aty0, const Float atz0,
const Float atx1, const Float aty1, const Float atz1,
const Float atxm, const Float atym, const Float atzm,
OctreeNode *const anode, const int anext):
tx0(atx0), ty0(aty0), tz0(atz0), tx1(atx1), ty1(aty1), tz1(atz1),
txm(atxm), tym(atym), tzm(atzm), node(anode), next(anext) {};
};
inline const int &next_node(const Float &txm, const int &xnode,
const Float &tym, const int &ynode, const Float &tzm, const int &znode)
{
if (txm < tym)
{
if (txm < tzm)
return xnode;
else
return znode;
}
else
{
if (tym < tzm)
return ynode;
else
return znode;
}
}
const Shape * Octree::nearest_intersection(const Shape *origin_shape, const Ray &ray,
Float &nearest_distance)
{
/* if we have no tree, fall back to naive test */
if (!built)
return Container::nearest_intersection(origin_shape, ray, nearest_distance);
OctreeTravState st[MAX_DEPTH+1];
OctreeTravState *st_cur = st;
# define node st_cur->node
# define tx0 st_cur->tx0
# define ty0 st_cur->ty0
# define tz0 st_cur->tz0
# define tx1 st_cur->tx1
# define ty1 st_cur->ty1
# define tz1 st_cur->tz1
# define txm st_cur->txm
# define tym st_cur->tym
# define tzm st_cur->tzm
int a = 0;
Vector ro(ray.o);
Vector rdir(ray.dir);
if (rdir.x < 0.0)
{
ro.x = (bbox.L.x+bbox.H.x) - ro.x;
rdir.x = -rdir.x;
a |= 4;
}
if (rdir.y < 0.0)
{
ro.y = (bbox.L.y+bbox.H.y) - ro.y;
rdir.y = -rdir.y;
a |= 2;
}
if (rdir.z < 0.0)
{
ro.z = (bbox.L.z+bbox.H.z) - ro.z;
rdir.z = -rdir.z;
a |= 1;
}
if (rdir.x == 0.0f) rdir.x = Eps;
if (rdir.y == 0.0f) rdir.y = Eps;
if (rdir.z == 0.0f) rdir.z = Eps;
rdir.x = 1.0f/rdir.x;
rdir.y = 1.0f/rdir.y;
rdir.z = 1.0f/rdir.z;
tx0 = (bbox.L.x - ro.x) * rdir.x;
tx1 = (bbox.H.x - ro.x) * rdir.x;
ty0 = (bbox.L.y - ro.y) * rdir.y;
ty1 = (bbox.H.y - ro.y) * rdir.y;
tz0 = (bbox.L.z - ro.z) * rdir.z;
tz1 = (bbox.H.z - ro.z) * rdir.z;
if (max3(tx0,ty0,tz0) >= min3(tx1,ty1,tz1))
return NULL;
node = root;
st_cur->next = -1;
const Shape *nearest_shape = NULL;
for (;;)
{
if (st_cur->next == -1)
{
st_cur->next = 8;
// if ray does intersect this node
if (!(tx1 < 0.0 || ty1 < 0.0 || tz1 < 0.0))
{
if (node->isLeaf())
{
ShapeList::iterator shape;
//register Float mindist = max3(tx0,ty0,tz0);
register Float dist = min(nearest_distance, min3(tx1,ty1,tz1));
for (shape = node->getShapes()->begin(); shape != node->getShapes()->end(); shape++)
if (*shape != origin_shape && (*shape)->intersect(ray, dist))
{
nearest_shape = *shape;
nearest_distance = dist;
}
if (nearest_shape != NULL)
return nearest_shape;
}
else
{
txm = 0.5f * (tx0+tx1);
tym = 0.5f * (ty0+ty1);
tzm = 0.5f * (tz0+tz1);
// first node
st_cur->next = 0;
if (tx0 > ty0)
{
if (tx0 > tz0)
{ // YZ
if (tym < tx0)
st_cur->next |= 2;
if (tzm < tx0)
st_cur->next |= 1;
}
else
{ // XY
if (txm < tz0)
st_cur->next |= 4;
if (tym < tz0)
st_cur->next |= 2;
}
}
else
{
if (ty0 > tz0)
{ // XZ
if (txm < ty0)
st_cur->next |= 4;
if (tzm < ty0)
st_cur->next |= 1;
}
else
{ // XY
if (txm < tz0)
st_cur->next |= 4;
if (tym < tz0)
st_cur->next |= 2;
}
}
}
}
}
while (st_cur->next == 8)
{
// pop state from stack
if (st_cur == st)
return NULL; // nothing to pop, finish
--st_cur;
}
// push current state
*(st_cur+1) = *st_cur;
++st_cur;
switch (st_cur->next)
{
case 0:
tx1 = txm;
ty1 = tym;
tz1 = tzm;
node = node->getChild(a);
(st_cur-1)->next = next_node(txm, 4, tym, 2, tzm, 1);
break;
case 1:
tz0 = tzm;
tx1 = txm;
ty1 = tym;
node = node->getChild(1^a);
(st_cur-1)->next = next_node(txm, 5, tym, 3, tz1, 8);
break;
case 2:
ty0 = tym;
tx1 = txm;
tz1 = tzm;
node = node->getChild(2^a);
(st_cur-1)->next = next_node(txm, 6, ty1, 8, tzm, 3);
break;
case 3:
ty0 = tym;
tz0 = tzm;
tx1 = txm;
node = node->getChild(3^a);
(st_cur-1)->next = next_node(txm, 7, ty1, 8, tz1, 8);
break;
case 4:
tx0 = txm;
ty1 = tym;
tz1 = tzm;
node = node->getChild(4^a);
(st_cur-1)->next = next_node(tx1, 8, tym, 6, tzm, 5);
break;
case 5:
tx0 = txm;
tz0 = tzm;
ty1 = tym;
node = node->getChild(5^a);
(st_cur-1)->next = next_node(tx1, 8, tym, 7, tz1, 8);
break;
case 6:
tx0 = txm;
ty0 = tym;
tz1 = tzm;
node = node->getChild(6^a);
(st_cur-1)->next = next_node(tx1, 8, ty1, 8, tzm, 7);
break;
case 7:
tx0 = txm;
ty0 = tym;
tz0 = tzm;
node = node->getChild(7^a);
(st_cur-1)->next = 8;
break;
}
st_cur->next = -1;
}
}