src/octree.cc
author Radek Brich <radek.brich@devl.cz>
Sat, 10 May 2008 14:29:37 +0200 (2008-05-10)
branchpyrit
changeset 95 ca7d4c665531
parent 93 96d65f841791
child 103 3b3257a410fe
permissions -rw-r--r--
build script fixes, add ldflags build option update and enhance demos fix bug in 4x grid oversampling warn if writePNG called while compiled without libpng make shapes in ShapeList const and add many other const needed due to snowball effect slightly optimize Camera::makeRayPacket using _mm_shuffle_ps make Vector SIMD vectorization disabled by default (causes problems) fix bug in implicit reflection of transmissive surfaces, when surface's reflection parameter is set to zero
/*
 * octree.cc: Octree class
 *
 * This file is part of Pyrit Ray Tracer.
 *
 * Copyright 2007, 2008  Radek Brich
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */

#include "octree.h"

OctreeNode::~OctreeNode()
{
	if (isLeaf())
	{
		leaf = leaf^1; // zero leaf bit
		delete shapes;
	}
	else
		delete[] children;
}

void OctreeNode::subdivide(const BBox &bbox, int maxdepth)
{
	ShapeList *l_shapes = getShapes();

	// prepare children (this also sets this node as non-leaf)
	makeChildren();

	// evaluate centres for axes
	const Float xsplit = (bbox.L.x + bbox.H.x)*0.5f;
	const Float ysplit = (bbox.L.y + bbox.H.y)*0.5f;
	const Float zsplit = (bbox.L.z + bbox.H.z)*0.5f;

	// set bounding boxes for children
	BBox childbb[8] = {bbox, bbox, bbox, bbox, bbox, bbox, bbox, bbox};
	for (int i = 0; i < 4; i++)
	{
		// this is little obfuscated, so on right are listed affected children
		// the idea is to cut every axis once per child, making 8 combinations
		childbb[i].H.x = xsplit;	// 0,1,2,3
		childbb[i+4].L.x = xsplit;  // 4,5,6,7
		childbb[i+(i>>1<<1)].H.y = ysplit;	// 0,1,4,5
		childbb[i+(i>>1<<1)+2].L.y = ysplit;// 2,3,6,7
		childbb[i<<1].H.z = zsplit;		// 0,2,4,6
		childbb[(i<<1)+1].L.z = zsplit; // 1,3,5,7
	}

	// distribute shapes to children
	ShapeList::iterator sh;
	unsigned int shapenum = 0;
	for (sh = l_shapes->begin(); sh != l_shapes->end(); sh++)
	{
		for (int i = 0; i < 8; i++)
			if ((*sh)->intersect_bbox(childbb[i]))
			{
				getChild(i)->addShape(*sh);
				shapenum++;
			}
	}

	if ((l_shapes->size() <= 8 && shapenum > 2*l_shapes->size())
	|| shapenum >= 6*l_shapes->size())
	{
		// bad subdivision, revert
		delete[] children;
		setShapes(l_shapes);
		return;
	}

	// remove shapes and set this node to non-leaf
	delete l_shapes;

	// recursive subdivision
	for (int i = 0; i < 8; i++)
		if (maxdepth > 1 && getChild(i)->getShapes()->size() > 4)
			children[i].subdivide(childbb[i], maxdepth-1);
}

void Octree::build()
{
	dbgmsg(1, "* building octree\n");
	root = new OctreeNode();
	ShapeList::iterator shape;
	for (shape = shapes.begin(); shape != shapes.end(); shape++)
		root->addShape(*shape);
	root->subdivide(bbox, max_depth);
	built = true;
}


/*******************************************************
octree traversal algorithm as described in paper
"An Efficient Parametric Algorithm for Octree Traversal"
by J. Revelles, C. Urena and M. Lastra.

see revision 37 for original recursive version
*******************************************************/

struct OctreeTravState
{
	Float tx0,ty0,tz0,tx1,ty1,tz1,txm,tym,tzm;
	OctreeNode *node;
	int next;
	OctreeTravState() {};
	OctreeTravState(
		const Float atx0, const Float aty0, const Float atz0,
		const Float atx1, const Float aty1, const Float atz1,
		const Float atxm, const Float atym, const Float atzm,
		OctreeNode *const anode, const int anext):
		tx0(atx0), ty0(aty0), tz0(atz0), tx1(atx1), ty1(aty1), tz1(atz1),
		txm(atxm), tym(atym), tzm(atzm), node(anode), next(anext) {};
};

inline const int &next_node(const Float &txm, const int &xnode,
	const Float &tym, const int &ynode, const Float &tzm, const int &znode)
{
	if (txm < tym)
	{
		if (txm < tzm)
			return xnode;
		else
			return znode;
	}
	else
	{
		if (tym < tzm)
			return ynode;
		else
			return znode;
	}
}

const Shape * Octree::nearest_intersection(const Shape *origin_shape, const Ray &ray,
		Float &nearest_distance)
{
	/* if we have no tree, fall back to naive test */
	if (!built)
		return Container::nearest_intersection(origin_shape, ray, nearest_distance);

#ifdef MSVC
	// MSVC wants constant expression here... hope it won't overflow :)
	OctreeTravState st[20];
#else
	OctreeTravState st[max_depth+1];
#endif
	OctreeTravState *st_cur = st;

#	define node	st_cur->node
#	define tx0	st_cur->tx0
#	define ty0	st_cur->ty0
#	define tz0	st_cur->tz0
#	define tx1	st_cur->tx1
#	define ty1	st_cur->ty1
#	define tz1	st_cur->tz1
#	define txm	st_cur->txm
#	define tym	st_cur->tym
#	define tzm	st_cur->tzm

	int a = 0;
	Vector ro(ray.o);
	Vector rdir(ray.dir);

	if (rdir.x < 0.0)
	{
		ro.x = (bbox.L.x+bbox.H.x) - ro.x;
		rdir.x = -rdir.x;
		a |= 4;
	}
	if (rdir.y < 0.0)
	{
		ro.y = (bbox.L.y+bbox.H.y) - ro.y;
		rdir.y = -rdir.y;
		a |= 2;
	}
	if (rdir.z < 0.0)
	{
		ro.z = (bbox.L.z+bbox.H.z) - ro.z;
		rdir.z = -rdir.z;
		a |= 1;
	}

	if (rdir.x == 0.0f) rdir.x = Eps;
	if (rdir.y == 0.0f) rdir.y = Eps;
	if (rdir.z == 0.0f) rdir.z = Eps;
	rdir.x = 1.0f/rdir.x;
	rdir.y = 1.0f/rdir.y;
	rdir.z = 1.0f/rdir.z;

	tx0 = (bbox.L.x - ro.x) * rdir.x;
	tx1 = (bbox.H.x - ro.x) * rdir.x;
	ty0 = (bbox.L.y - ro.y) * rdir.y;
	ty1 = (bbox.H.y - ro.y) * rdir.y;
	tz0 = (bbox.L.z - ro.z) * rdir.z;
	tz1 = (bbox.H.z - ro.z) * rdir.z;

	if (max3(tx0,ty0,tz0) >= min3(tx1,ty1,tz1))
		return NULL;

	node = root;
	st_cur->next = -1;

	const Shape *nearest_shape = NULL;
	for (;;)
	{
		if (st_cur->next == -1)
		{
			st_cur->next = 8;

			// if ray does intersect this node
			if (!(tx1 < 0.0 || ty1 < 0.0 || tz1 < 0.0))
			{
				if (node->isLeaf())
				{
					ShapeList::iterator shape;
					//register Float mindist = max3(tx0,ty0,tz0);
					register Float dist = min(nearest_distance, min3(tx1,ty1,tz1));
					for (shape = node->getShapes()->begin(); shape != node->getShapes()->end(); shape++)
						if (*shape != origin_shape && (*shape)->intersect(ray, dist))
						{
							nearest_shape = *shape;
							nearest_distance = dist;
						}
					if (nearest_shape != NULL)
						return nearest_shape;
				}
				else
				{
					txm = 0.5f * (tx0+tx1);
					tym = 0.5f * (ty0+ty1);
					tzm = 0.5f * (tz0+tz1);

					// first node
					st_cur->next = 0;
					if (tx0 > ty0)
					{
						if (tx0 > tz0)
						{ // YZ
							if (tym < tx0)
								st_cur->next |= 2;
							if (tzm < tx0)
								st_cur->next |= 1;
						}
						else
						{ // XY
							if (txm < tz0)
								st_cur->next |= 4;
							if (tym < tz0)
								st_cur->next |= 2;
						}
					}
					else
					{
						if (ty0 > tz0)
						{ // XZ
							if (txm < ty0)
								st_cur->next |= 4;
							if (tzm < ty0)
								st_cur->next |= 1;
						}
						else
						{ // XY
							if (txm < tz0)
								st_cur->next |= 4;
							if (tym < tz0)
								st_cur->next |= 2;
						}
					}
				}
			}
		}

		while (st_cur->next == 8)
		{
			// pop state from stack
			if (st_cur == st)
				return NULL; // nothing to pop, finish
			--st_cur;
		}

		// push current state
		*(st_cur+1) = *st_cur;
		++st_cur;

		switch (st_cur->next)
		{
			case 0:
				tx1 = txm;
				ty1 = tym;
				tz1 = tzm;
				node = node->getChild(a);
				(st_cur-1)->next = next_node(txm, 4, tym, 2, tzm, 1);
				break;
			case 1:
				tz0 = tzm;
				tx1 = txm;
				ty1 = tym;
				node = node->getChild(1^a);
				(st_cur-1)->next = next_node(txm, 5, tym, 3, tz1, 8);
				break;
			case 2:
				ty0 = tym;
				tx1 = txm;
				tz1 = tzm;
				node = node->getChild(2^a);
				(st_cur-1)->next = next_node(txm, 6, ty1, 8, tzm, 3);
				break;
			case 3:
				ty0 = tym;
				tz0 = tzm;
				tx1 = txm;
				node = node->getChild(3^a);
				(st_cur-1)->next = next_node(txm, 7, ty1, 8, tz1, 8);
				break;
			case 4:
				tx0 = txm;
				ty1 = tym;
				tz1 = tzm;
				node = node->getChild(4^a);
				(st_cur-1)->next = next_node(tx1, 8, tym, 6, tzm, 5);
				break;
			case 5:
				tx0 = txm;
				tz0 = tzm;
				ty1 = tym;
				node = node->getChild(5^a);
				(st_cur-1)->next = next_node(tx1, 8, tym, 7, tz1, 8);
				break;
			case 6:
				tx0 = txm;
				ty0 = tym;
				tz1 = tzm;
				node = node->getChild(6^a);
				(st_cur-1)->next = next_node(tx1, 8, ty1, 8, tzm, 7);
				break;
			case 7:
				tx0 = txm;
				ty0 = tym;
				tz0 = tzm;
				node = node->getChild(7^a);
				(st_cur-1)->next = 8;
				break;
		}
		st_cur->next = -1;
	}
}